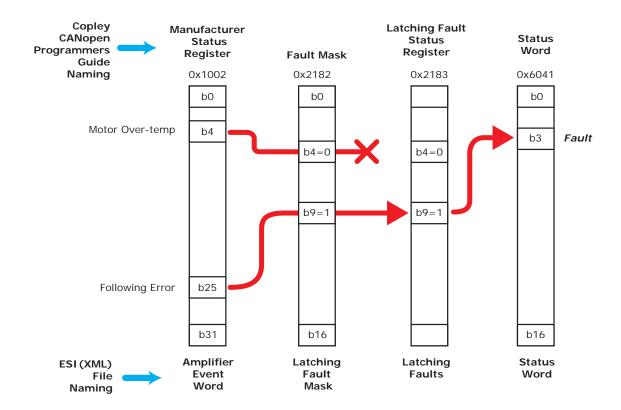


Handling Faults in CANopen and EtherCAT

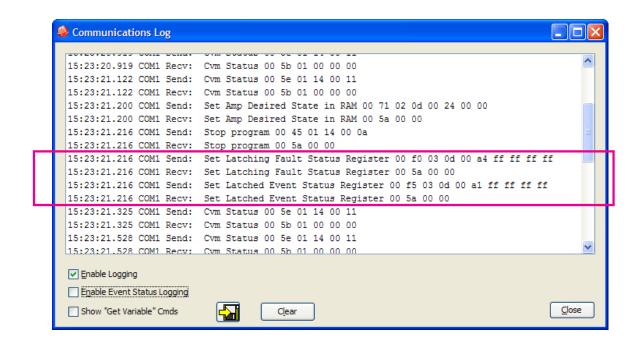

ABOUT FAULTS

- The Manufacturer Status Register (0x1002) is a real-time monitor of conditions in the drive
- Some of these conditions are linked to the Latching Fault Status Register (0x2183)
 Whenever this 16-bit register does not equal zero, a Latching Fault occurs
- The Fault Mask (0x2182) determines which ESR bits are allowed to pass into 0x2183
 Bits must be set (1) for ESR bits to pass into 0x2183 and produce a Latching Fault.
 A bit that is zero will prevent an ESR condition from producing a Latching Fault
- Latching Faults force the drive to disable and set bit 3 of the Status Word

FAULTS HAPPEN

Suppose that the motor is over-heating and as a result a follow error occurs. The graphic below shows how this might be handled.

- Bits 4 and 25 in the Amplifier Event Word are set
- The Fault Mask has a 0 in bit 4 so that the motor condition doesn't generate a latching fault. Bit 9 is a 1 because an excessive following error should shut the drive down to protect the equipment.
- Bit 9 in the Latching Faults object goes to 1 and a latching fault occurs
- The *Status Word* shows the fault when bit 3 is set.
 This is the "check engine" indicator that demands action to deal with the fault.


Handling Faults in CANopen and EtherCAT

CLEARING FAULTS

- First, ELIMINATE THE CAUSE OF THE FAULT !!
- Next, clear the Latching Fault register
 Write 1's into the associated bit of each fault to be cleared.
 To clear the entire 32-bits, write 0xFFFFFFFF to 0x2183
- Clear the Latched Event Status Register 0x2181
 This is like a memory of all the momentary Amp Events and will contain the events that produced the latching fault. Clear this the same way as the 0x2183
 by writing 1's bit-by-bit, or 0xFFFFFFFF to clear them all.
- Clear the Sticky Event Status Register 0x2180
 Like 0x2181, this is a memory-register of Amp Events, but is cleared simply by reading it.
- When Latching Faults has been cleared and no fault conditions exist in the drive, Status Word bit 3 will clear and the drive can be re-enabled.

CLEARING FAULTS IN CME2

- First, CME2 clears the Latching Fault register by writing 0xFFFFFFF to it.
- Byte 1 of the string is the node address, typically 00 when not multi-dropped Byte 2 is a checksum
 - Byte 3 is the number of 16-bit word that follow the first four bytes (the header)
 - Byte 4 is the op-code: Od (13) writes to a parameter to set a value
 - Bytes 5~6 is the first word (msb first), and specifies parameter 0xa4 (0x2183)
 - Bytes 7~8 are the second word, data, and is 0xFFFF (the upper 16-bits)
 - Bytes $9 \sim 10$ are the third word = 0xFFFF (the lower 16-bits)
 - The parameter is a 32-bit value so two 16-bit words are needed to send the data
- Repeat this process for parameter 0xa1 (0x2181)

