
Introduction
Copley servo drives support a trajectory generation mode know as PVT interpolation. PVT stands
for Position, Velocity, and Time. In this mode, the master controller provides the trajectory
sequence to the drive as a set of points and the drive interpolates between the given points. This
allows the master controller to specify an arbitrary move which the drive will smoothly follow.

Each point provided by the master includes the following information:

Position The desired position of the motor at the start of the point. This is specified in
units of encoder counts.

Velocity The desired velocity of the motor at the start of the point. This is specified in
tenths of encoder counts / second. For example, a value of 1234 would
indicate a velocity of 123.4 cts/sec.

Time The time in milliseconds until the start of the next segment. A value of
zero indicates the end of the move.

Flags Some additional information which can be used to modify how the passed
data is interpreted by the drive. Currently supported flags:

• Relative position flag. If set the position information supplied with the
PVT point is treated as a change in position since the previous point. If
not set the the position is considered absolute.

• Interpolation mode. If set, the drive will ignore the velocity value
passed and perform linear interpolation when approaching this segment.
If clear, the drive will use cubic polynomial interpolation between the
segments.

PVT points sent by the master are stored in a buffer in the drive. When the PVT move is
executing, the drive will remove points from the buffer as they are needed. The master will
supply additional points during the move to keep the buffer from emptying until the end of the
move. The last point supplied by the master will hold a zero time value which indicates to the
drive that the move is finished when that point is attained. Once the move ends the drive will
stop consuming points from the buffer until the next PVT move is started.

AN141

16-127174

PVT Trajectory Calculations

1 Copley Controls 16-127174rev00

PVT moves via binary serial
It’s possible for the master to send PVT points to the drive using the drive’s binary serial interface.
The details of the binary serial interface are covered in another document, but the general
procedure is as follows:

• The drive should be configured in programmed position mode via CME.

• The trajectory configuration (parameter 0xC8) should be set to a value of 3. This
configures the drive for PVT interpolation trajectory mode.

• The master sends the PVT points to the drive by writing to serial parameter 0x115. This
parameter is used to add points to the drive’s internal trajectory buffer which is large
enough to store a total of 32 PVT points. That buffer size may be increased in future
firmware versions.

• Once the master has written the desired number of points to the buffer, the trajectory is
started by sending the start move command (op-code 17). This causes the drive to start
the trajectory.

• The drive will consume points from the buffer. The master must continue to write new
points to the buffer during the move until the final point is written. The final point of the
move is identified by the zero time value included with that point.

Parameter 0x115 is used to write points to the drive’s internal trajectory buffer. The parameter is
written as a 16-bit word followed by up to two 32-bit integer values.

The first 16-bit word written to parameter 0x115 holds either the PVT time value or a command
used to manipulate the buffer. When used to send PVT time information, the word is formatted as
follows:

Bits Contents Description

0-7 Time PVT segment time in millisecond units. The maximum length of a PVT
segment is 255 milliseconds long. A time value of 0 is used to denote the
end of a move.

8-11 Reserved These bits should be written as zero.

12 Relative If this bit is clear, then the position data sent with the move is an absolute
position. If this bit is set, then the position value is relative to the position
in the previous PVT point.
For the first PVT point in a move, if the position data is sent as a relative
position then it’s the distance from the commanded position at the time the
move is started.

13-14 Reserved These bits should be written as zero.

15 Zero This bit must be zero when writing PVT time information.

2 Copley Controls 16-127174rev00

For PVT buffer manipulation commands, the 16-bit word value is formatted as follows:

Bits Contents Description

0-7 Command
data

The meaning of the value sent in these bits depends on the command
code.

8 Command
code

These bits identify the command being sent and the meaning of bits
0-7. Legal command codes are:

0 – Clear the buffer and abort any PVT moves in progress.
1 – Remove the N most recently added points from the buffer where N is

the value passed in bits 0-7.

9-14 Reserved These bits should be written as zero.

15 One This bit must be set for PVT commands.

When sending buffer manipulation commands no additional data follows this 16-bit word.

When writing PVT data, either one or two 32-bit integer values must follow the initial 16-bit word
holding the PVT time.

The first 32-bit integer gives the position (in encoder counts) corresponding to this PVT point.
The position can either be an absolute position value, or a relative distance from the previous
point (or start of move) depending on the value of bit 12 in the previous word.

The second 32-bit value gives the velocity in 0.1 encoder count/second units. This value is
optional and if omitted will cause the drive to use linear interpolation in the segment approaching
this PVT point. If the velocity is given, then the drive will use cubic polynomial interpolation.

Reading parameter 0x115 will return three 16-bit words of data. The first word holds the
number of free positions in the trajectory buffer. The following two words are reserved and
should be ignored.

3 Copley Controls 16-127174rev00

PVT mode in CANopen / EtherCAT
PVT mode is used when running in interpolated position mode via either CANopen or EtherCAT.
Interpolated position mode is a standard CANopen mode of operation which is more thoroughly
discussed in the CANopen programmer’s guide.

When running in Interpolated position mode via CANopen, there are two sets of objects which
can be used to add points to the drive’s internal buffers. One set is intended to conform to the
DS402 CANopen specification, the other is a Copley specific set of objects which have some
advantages over the standard objects.

Standard DS402 objects
These objects are defined in the DS402 CANopen specification and are summarized here.

Object 0x60C0 – Interpolation sub-mode select:

This 16-bit object selects the type of interpolation mode used by the drive.

DS402 only defines one standard value for this object (0) which means linear interpolation. Values 1
through 32767 are reserved by the standard. Values -1 through -32768 are for vendor specific
modes. The following values are supported by Copley drives:

0: In this mode linear interpolation will be used between points. Additionally, when this
mode is selected the drive will clear the trajectory buffer when the PVT move is first
started deleting any points added before that time. The move won’t actually start until
three new points have been added by the master. The time value used between points
(specified using object 0x60C2) will be adjusted by the drive by +/- 1 servo period if
necessary to try to keep the number of points in the buffer equal to 3 at all times.

This mode is mostly useful if the master controller will be adding points to the drive at a
constant rate, but may not be well synchronized with the drive’s internal clock. The drive
will make small adjustments to the PVT time value to try to prevent the buffer from
overflowing or underflowing.

-1: This mode also uses linear interpolation between points, but doesn’t flush the trajectory
buffer when the move is started, or manipulate the time value like mode 0 does. It’s
useful when the master is synchronized to the drive and linear interpolation is desired.
The time value for every segment is constant in this mode and written to object
0x60C2.

-2: This mode also uses linear interpolation, but the time value for each segment is written

along with the positions to object 0x60C1. The value written to 0x60C2 is ignored in
this mode.

-3: This mode also uses cubic polynomial interpolation with unique time values for each
segment.

4 Copley Controls 16-127174rev00

Object 0x60C1 – Interpolation data record

This object is used to write PVT data to the drive’s trajectory buffer. It has several sub-indices which
are used to write the different data values.

Sub-index 1: This 32-bit sub-index is used to write the position data in all sub-modes. For
sub-modes 0 and -1 which use linear interpolation with fixed times, writing a
value to this sub-index will immediately cause the value to be added to the
drive’s trajectory buffer. Positions are written in units of encoder counts.

Sub-index 2: This 8-bit sub-index is used to write the time value in millisecond units for sub-
modes -2 or -3. In sub-mode -2 writing a time to this sub-index will cause
the position (from sub-index 1) and time to immediately be written to the
drive’s trajectory buffer. This sub-index should not be written when running in
modes 0 or -1.

Sub-index 3: This 32-bit value is used to write the velocity values for use in sub-mode -3.
Writing this sub-index will cause the PVT data to be added to the buffer. This
sub-index shouldn’t be written in any mode other then -3. Velocities are written
in units of 0.1 counts/second.

When running in sub-mode 0 or -1 the master simply writes each position to sub-index 1 of this
object. Each time a new position is written, it will be stored in the drives trajectory buffer.

When running in sub-mode -2, the master should write positions to sub-index 1 first, then write
the time that goes along with that position to sub-index 2. In this mode the data is copied to the
drive’s buffer when sub-index 2 is written.

When running in sub-mode -3, the master should write the position and time to the first two sub-
indexes first, then write the velocity last. In this mode the copy to the drive’s trajectory buffer is
triggered by the write to sub-index 3.

Object 0x60C2 – Interpolation time period

This object stores the fixed time period for use in sub-modes 0 and -1. The times are given
in scientific notation using two sub-indexes.

Sub-index 1: This 8-bit unsigned value gives the number of time units.
Sub-index 2: This 8-bit signed value gives the time unit value. It’s specified as 10x

seconds where x is the value written. Legal values range from -3 for
milliseconds to -6 for microseconds.

Normally sub-index 2 is left at it’s default value of -3 and sub-index 1 is used to write the PVT period
in millisecond units. For example, setting sub-index 1 to 15 and sub-index 2 to -3 would mean a

5 Copley Controls 16-127174rev00

time period of 15x10-3 seconds, or 15ms.

Copley specific objects

An alternative to using the standard objects described above is to use the following Copley
specific objects to add points to the buffer.

The main advantages of the Copley objects is that a PVT point can be added using a single
write to object 0x2010. This object is designed to fit in a CANopen PDO message which allows
points to be added very quickly and efficiently over CANopen.

Object 0x2010 – PVT data object

This object is 8 bytes long which the maximum length of a CANopen datagram.

The first byte of data written to this object holds a command or formatting information. It
defines how the remainder of the command is interpreted. The remaining seven bytes hold the
position, velocity, and time information for PVT segments.

Details of this object can be found in the CANopen programmer’s manual, available for
download on Copley’s web site.

Object 0x2011 – Trajectory buffer free count

This 16-bit object gives the number of free spaces available in the trajectory buffer.

Object 0x2012 – Trajectory buffer status

This 32-bit object gives detailed information about the trajectory buffer status including the
number of free positions and any latched errors (underflow, overflow, etc). See the CANopen
programmer’s guide for details.

6 Copley Controls 16-127174rev00

Linear interpolation
When points are specified without velocity information the drive will use simple linear
interpolation to interpolate between the points. This is often referred to as PT mode as opposed
to PVT mode since no velocities are needed. With linear interpolation the drive will calculate a
new velocity for each set of points and will use this velocity value to update the trajectory
position every servo cycle.

Linear interpolation has the advantage that it’s very easy for the master to calculate the data to
send to the drive because there are no velocities to calculate. It does not produce as smooth
motion as is possible with cubic polynomial interpolation however.

Cubic Polynomial Interpolation
The normal type of interpolation used by the drive during PVT trajectory processing is called
cubic polynomial interpolation. When using this interpolation mode the drive calculates the
coefficients of a cubic polynomial which it then uses to smoothly interpolate between the position
of the starting point to the position of the ending point. The velocity at the start and end of the
segment will also smoothly transition between the values provided by the master.

The formula used to calculate the polynomial coefficients is very simple. The inputs to the
calculation are the position and velocity at the start (P0,V0) and end (PT,VT) of the segment, and
the time (T) between the two segments. Given those inputs, the drive calculates the four
coefficients of a cubic polynomial that will transition between the specified (p,v) states in the
time required:

p(t) = b0 + b1*t + b2*t2 + b3*t3

where 0 <= t <= T, and b(0..3) are the coefficients of the polynomial.

To calculate the coefficients, we first will find the first derivative of the polynomial:
p'(t) = v(t) = b1 + 2*b2*t + 3*b3*t2

Now, we already know p(0) and v(0) which were given, so solving the two equations with t = 0
gives us:

p(0) = b0 = P0
v(0) = b1 = V0

We can solve for b2 and b3 by substitution at time T:

Rewrite the p(t) formula solving for b2:
b2 = (PT - P0 - V0*T - b3*T3) / T2

substitute that into the p'(t) formula:
VT = V0 + 2*T*[(PT-P0-V0*T-b3*T3) / T2] + 3*b3*T2

Now, solve for b3:

7 Copley Controls 16-127174rev00

VT - V0 = 2*(PT-P0)/T -2V0 -2*b3*T2 + 3*b3*T2 VT
+ V0 = 2*(PT-P0)/T + b3*T2
b3 = (VT+V0)/T2 + 2*(P0-PT)/T3

Now, substitute back into the p(t) formula to find b2
PT = P0 + V0*T + b2*T2 + T3*[(VT+V0)/T2 + 2*(P0-PT)/T3] PT
- P0 = V0*T + b2*T2 + T*(VT+V0) + 2*(P0-PT)
b2*T2 = (PT-P0) - V0*T - (VT+V0)*T + 2*(PT-P0)
b2 = (3*(PT-P0) - V0*T - VT2 -V0*T) / T2
b2 = 3*(PT-P0)/T2 - (2*V0+VT)/T

To summarize, our 4 coefficients are:
b0 = P0
b1 = V0

b2 = 3*(PT-P0)/T2 - (2*V0+VT)/T
b3 = (VT+V0)/T2 + 2*(P0-PT)/T3

So, between any two points in a PVT trajectory the drive calculates these four coefficients (b0,
b1, b2, b3), and uses them to determine the commanded position and velocity during that
segment. By the time the second point is reached the position and velocity will exactly equal the
values given for that point. The drive then starts over by calculating new coefficients using the
second and third points in the PVT, etc.

By definition, the position and velocity during the move will be continuous. Acceleration will
change linearly during each segment, but may jump to a new value at the start of the next
segment. Jerk (the rate of change of acceleration) will be a constant value for each segment in
the PVT profile.

The quality of the resulting move will be entirely determined by the PVT data input by the
master. For example, the following graphs each show the interpolated results of a short PVT
move consisting of three segments between the positions [0, 5000, 15000, 20000]. The time
between the given points is 10ms for each graph. The only difference is the velocity values
provided with those positions.

8 Copley Controls 16-127174rev00

First, an example of what the drive would interpolate if all the velocity values were zero. The
drive will happily interpolate between these points, but the resulting trajectory will be quite
rough. This graph shows the position, velocity and acceleration values for the three segments
between the four points:

In the position and velocity graphs the points given by the master are identified with a red
asterisk. The blue line shows the interpolated data between the points. Notice that the drive is
correctly moving between the given data points and that position and velocity are continuous. The
interpolated acceleration value moves linearly between points, but jumps to a new value at the
start of each segment.

9 Copley Controls 16-127174rev00

A smoother move between the same set of positions [0, 5000, 15000, 20000] can be made by
calculating better velocity values to go with each position. In the next graph we use zero
velocities for the start and end of the move, but use a simple average for the internal velocities.
For example, the velocity passed with the second point (P1 with position 5000) is P2-P0 / (2T),
i.e. (15000-0)/0.020 or 750000.

This is a much smoother looking move then the previous one. As before, the position and
velocity points are hit exactly by the drive. The acceleration still changes abruptly at the start of
each point, but the change is less severe then in the previous example.

10 Copley Controls 16-127174rev00

If we were to very carefully calculate our velocity values then we could produce an even
smoother curve between the given points. In the next graph the velocities were chosen such
that the acceleration values calculated by the drive would be continuous from the end of one
segment to the start of the next segment:

As always, the positions and velocities (marked in red) are hit exactly by the interpolation
calculations. The accelerations happen to be continuous between the points due to the way the
velocities were calculated for this move.

11 Copley Controls 16-127174rev00

Calculating velocity for continuous accelerations
The velocity values used in the last graph above were calculated in such a way that the
resulting accelerations would be continuous between points in the move. This is just one
possible way to calculate PVT points which would result in a relatively smooth move between
a set of positions.

As described previously, the coefficients of the polynomial used when interpolating between
sets of points are calculated for each set of points (P(n),V(n)) to (P(n+1),V(n+1)) as:

 b0 = P(n)
b1 = V(n)

 b2 = 3*(P(n+1)-P(n))/T2 - (2*V(n)+V(n+1))/T
b3 = (V(n+1)+V(n))/T2 + 2*(P(n)-P(n+1))/T3

Where P(n), V(n) are one supplied PVT point and P(n+1), V(n+1) are the next given point.
T is the time between those two points.

Since the position over that segment is a cubic polynomial using those four coefficients, we
can calculate the formula for the velocity, acceleration, and jerk over that segment by
differentiation:

V(t) = b1 + 2*b2*t + 3*b3*t2

A(t) = 2*b2 + 6*b3*t
J(t) = 6*b3

Here we can see that Jerk is constant over each segment and acceleration changes linearly
during the segment.

The coefficients for each segment are calculated to ensure that the position and velocity at
the end of one segment are equal to the given position and velocity at the start of the next.
Position and velocity will therefore always be continuous during a PVT move.

The acceleration resulting from the PVT calculations will change linearly during a segment,
but may jump to a new value at the start of the next segment. These discontinuities in
acceleration will result in rough motion and are generally undesirable.

If we have a set of points that we want to move through and need to calculate velocities for
them, then one possible method of calculating those velocities would be to calculate them in
such a way that the accelerations remain continuous over the course of the move.

Lets say we have just three points (P0,V0), (P1,V1), and (P2,V2) and a constant time T
between each pair of points. Lets further say that we know V0 and V2 and want to find V1
such that the acceleration remains continuous over those points.

We know from above that the acceleration over a segment will be

12 Copley Controls 16-127174rev00

A(t) = 2*b2 + 6*b3*t

where t ranges from 0 to T.

If we set the ending acceleration of one segment equal to the starting acceleration of
the next segment, then the resulting accelerations will be continuous over those two
segments.

2*(3*(P1-P0)/T2 – (2*V0+V1)/T) + 6*T*((V1+V0)/T2 + 2*(P0-P1)/T3) = 2*(3*(P2-P1)/T2 – (2*V1+V2)/

T) 3*(P1-P0)/T2 – (2*V0+V1)/T + 3*T*((V1+V0)/T2 + 2*(P0-P1)/T3) = 3*(P2-P1)/T2 – (2*V1+V2)/T

3*(P1-P0)/T2 – (2*V0+V1)/T + 3*(V1+V0)/T + 6*(P0-P1)/T2 = 3*(P2-P1)/T2 – (2*V1+V2)/T

3*(P1-P0)/T – (2*V0+V1) + 3*(V1+V0) + 6*(P0-P1)/T = 3*(P2-P1)/T – (2*V1+V2)

3*(P1-P0)/T + 6*(P0-P1)/T -3*(P2-P1)/T = (2*V0+V1) – (2*V1+V2) – 3*(V1+V0)

3/T*(P1 -P0 +2*P0- 2*P1 -P2 +P1) = 2*V0 +V1 – 2*V1 -V2 – 3*V1 -3*V0

3/T*(P0-P2) = -V0 -4*V1 -V2

V1 = (-3/T*(P0-P2) -V0 -V2)/4 call this formula F1

So, if we knew the surrounding velocities and all the positions we could find the center
velocity (V1) such that the acceleration remains continuous.

We can extend this to four points, (P0,V0) … (P3,V3). Lets say we know the V0 and V3
and want to find V1 and V2 for continuous accelerations.

We know from above that we could find V1 or V2 if we knew the surrounding velocities:

V1 = (-3/T*(P0-P2) - V0 - V2) / 4
V2 = (-3/T*(P1-P3) - V1 - V3) / 4

Substituting the V2 formula into V1 gives us:

V1 = (-3/T*(P0-P2) - V0 - ((-3/T*(P1-P3) - V1 - V3) / 4)) / 4

V1 = -3/T*(P0-P2)/4 - V0/4 + (3/T*(P1-P3) + V1 + V3) / 16

V1 = 3(P2-P0)/(4T) - V0/4 + 3(P1-P3)/(16T) + V1/16 +

V3/16 V1 * 15/16 = 3(P2-P0)/(4T) - V0/4 + 3(P1-P3)/(16T)

+ V3/16 V1 = (12(P2-P0)/T - 4*V0 + 3(P1-P3)/T + V3) / 15 call this formula F2

This gives us V1 based just on the positions and V0 and V3. We can then find V2 using
formula F1 above that uses the positions and V1 and V3.

That’s great if we only have four points and know the starting and ending velocities, say
zero since we probably want to start and end the move with zero velocity. If we had five
points we could extend this formula again by substituting and simplifying, but what if we
have 10,000 points? It’s not really practical to extend this formula that far.

What we can do is make a rough guess at reasonable velocities for a set of positions using
a very simple algorithm like averaging the velocity change across two segments, then use
the above formulas to refine those velocities to smooth out the move.

Take the following 10 positions chosen pretty randomly:

pos = [0, 100, 150, 200, 300, 240, 0, -100, -50, 40]

13 Copley Controls 16-127174rev00

First, we’ll take a rough guess at the velocities for each point by averaging the velocity over
each pair of segments, and using zero as the starting and ending velocity. For example,
the velocity at the start of the second segment would be (pos[2]-pos[0])/(2*T) where T is
the time between segments, say 10ms. That gives us the following first guess at
velocities:

vel = [0, 7500.0, 5000.0, 7500.0, 2000.0, -15000.0, -17000.0, -2500.0, 7000.0, 0]

Since we know the formula the drive uses to interpolate points, we can calculate and
graph the resulting trajectory that the drive would create with this input. Here’s a graph
of the position, velocity and acceleration of the resulting move using this first guess:

You can see that the positions are reasonably smooth and pass through all our points. The
velocities are a little rough due to the discontinuities in the acceleration values. Not great,
but a reasonable first guess.

Now, let’s use these velocities and positions and run them through the formulas we came
up with above to calculate a new set of velocities with the goal of removing the
discontinuities in acceleration that our rough guess caused. We’ll leave the starting and
ending velocities at zero which seems reasonable, and calculate all the intervening
velocities using the formula (F2). The

14 Copley Controls 16-127174rev00

very last point will use the simpler formula (F1). The resulting trajectory after this step
looks better:

There are still some slight discontinuities in acceleration, but they’re much smaller then
in the previous graph. We could further improve the move by running these improved
velocities through the same set of equations:

15 Copley Controls 16-127174rev00

At this point there are no obvious discontinuities in the acceleration values and the resulting
positions and velocities look quite smooth. We could run the velocities through our
smoothing formulas again, but it probably wouldn’t change them very much.

This approach is one possible method for calculating reasonable velocity values to generate
a PVT move through a set of known points. It’s certainly not the only possible method and
probably not the optimal method for all applications, but it’s simple and fast and gives
reasonable results.

16 Copley Controls 16-127174rev00

Using PVT points to generate S-curve moves
An S-curve move is a type of trajectory between two positions in which velocity and acceleration
remain continuous during the move. S-curve moves can be fit very easily into a series of PVT
segments resulting in a very smooth move between two points.

The simplest form of S-curve move between two points consists of just four segments of equal
time. At the start of the first segment the velocity and acceleration are zero. During that first
segment, the acceleration increases linearly at a constant rate (known as jerk). During the
second and third segments the acceleration decreases linearly at that same rate, and increases
again during the last segment again at the same rate.

This type of move can be specified using just 4 PVT segments (i.e. 5 points). The calculation of
the positions and velocities for the five points is quite simple. First, assume that we’re starting
from position 0. If we know the time of each segment (T) and the jerk (J), then we can calculate
the required positions and velocities using a bit of calculus (derivation left as an exercise to the
reader):

pos = [0, J*T3/6, J*T3, J*T3*(11/6), 2*J*T3]

vel = [0, J*T2/2, J*T2, J*T2/2, 0]
Presumably we know the distance of the desired move (D), so we can calculate jerk using that:

J = D/(2 * T3)
Alternately, if we knew the desired jerk value, then we could use it to calculate the time of the
segments by rearranging the above formula.

17 Copley Controls 16-127174rev00

Here’s an example of an s-curve move from 0 to 1000 counts using the above formula with a
segment time of 100ms:

One could calculate slightly more complex s-curve moves which limited the maximum velocity
and/or acceleration to desired values. Such moves would consist of more segments then the
simple s-curve move shown above, but any such move can be easily described as a set of PVT
points.

Conclusion
PVT trajectory mode is a very flexible way for the master to send complex trajectories to the
drive. There are many different ways to calculate such trajectories, this applications note just
gives a few possible examples.

18 Copley Controls 16-127174rev00

19 Copley Controls 16-127174rev00

Revision History

Date Version Revision

5/5/2020 Rev 00 Initial release

	Introduction
	PVT moves via binary serial
	PVT mode in CANopen / EtherCAT
	Standard DS402 objects
	Copley specific objects

	Linear interpolation
	Cubic Polynomial Interpolation
	Calculating velocity for continuous accelerations
	Using PVT points to generate S-curve moves
	Conclusion
	Revision History

