
Copley Controls 3

CMO Programmer’s

Guide

16-01041
Revision 04

December 2021

CMO Programmer’s Guide

 4 Copley Controls

TABLE OF CONTENTS

1. About This Manual ... 6
2. Fundamental Concepts and Procedures ... 9

2.1 Introduction ... 9
2.2 System Requirements .. 9
2.3 .NET Framework Compatibility ... 10
2.4 32-bit vs. 64-bit Compatibility ... 10
2.5 CANopen Network .. 11
2.6 Communication Errors .. 11
2.7 Node Guarding ... 11
2.8 Exception Handling ... 12
2.9 Units .. 12
2.10 Stepnet Amplifiers ... 12

3. Using CMO in an application .. 14
3.1 Building an Application .. 14
3.2 Before Running a CMO Program ... 14
3.3 Download and Install CMO .. 14
3.4 Adding a Reference to CMO in Visual Studio .. 15
3.5 Object Initialization Sequence .. 16

4. Network Objects .. 17
5. Amplifier and Related Objects ... 18

5.1 ampSettingsObj ... 18
5.2 Amplifier Initialization ... 20
5.3 Amplifier Enable/Disable ... 21
5.4 Objects Contained by AmpObj ... 22
5.5 AmpInfoObj ... 22
5.6 Motor/Feedback Information .. 26
5.7 Current Loop ... 33
5.8 Velocity Loop ... 35
5.9 Position Loop ... 37
5.10 Tracking Windows ... 39
5.11 Homing .. 40
5.12 Quick Stop ... 44
5.13 Halt ... 45
5.14 Point-to-Point Moves .. 45
5.15 Save/Restore Amplifier Data ... 47
5.16 Node Guarding .. 48
5.17 Status, Events, and Faults .. 48
5.18 Digital Inputs/Outputs ... 51
5.19 Amplifier Events .. 60
5.20 Amplifier Trace .. 61
5.21 Other Methods and Properties ... 68

6. Linkage .. 72
6.1 LinkageSettingsObj .. 72
6.2 LinkageObj .. 73

7. The Event Object ... 77
8. The I/O Object .. 79

8.1 Analog Inputs .. 82
8.2 Analog Outputs .. 83
8.3 Digital Inputs ... 84
8.4 Digital Outputs .. 85

9. CopleyMotionLibrary Object ... 86
10. Layer Setting Service Object .. 87

CMO Programmer’s Guide

 5 Copley Controls

11. PDO Related Objects .. 89
11.1 PDO mapping objects ... 89
11.2 RPDOObj .. 89
11.3 TPDOObj .. 90

12. The Path Planning Object .……………………………………………………………………….. 91

13. The PvtConstAccelTrj Object ……………………………………………………………………. 94

CMO Programmer’s Guide About This Manual

 6 Copley Controls

1. About This Manual

Related Documentation
• CANopen Programmer’s Manual

• CAN Bus Cabling Guide

• CME User Guide

Information about CANopen can be found on the CAN in Automation website at:

http://www.can-cia.de/index.php?id=canopen

Copley Controls software and related information can be found at:

http://www.copleycontrols.com

For more information on Microsoft® .NET please refer to:

http://www.microsoft.com.

Copyrights
No part of this document may be reproduced in any form or by any means, electronic or

mechanical, including photocopying, without express written permission of Copley Controls.

CME and CMO are registered trademarks of Copley Controls. Windows 10/8/7, Visual Basic, and

.NET are trademarks or registered trademarks of the Microsoft Corporation.

Document Validity
We reserve the right to modify our products. The information in this document is subject to

change without notice and does not represent a commitment by Copley Controls. Copley Controls

assumes no responsibility for any errors that may appear in this document.

http://www.copleycontrols.com/Motion/pdf/CANopenProgrammersManual.pdf
http://www.copleycontrols.com/Motion/pdf/CAN-Bus.pdf
http://www.copleycontrols.com/Motion/pdf/CME2_User_Guide.pdf
http://www.can-cia.de/index.php?id=canopen
http://www.copleycontrols.com/
http://www.microsoft.com/

CMO Programmer’s Guide About This Manual

 7 Copley Controls

Product Warnings
Observe all relevant state, regional and local safety regulations when installing and using Copley

Controls amplifiers. For safety and to assure compliance with documented system data, only

Copley Controls should perform repairs to amplifiers.

WARNING

Use caution in designing and programming machines that affect the

safety of operators.

The examples in this book are for demonstration purposes only, providing

guidelines for programming. The programmer is responsible for creating
program code that operates safely for the amplifiers and motors in any given

machine.

Failure to adhere to this warning can cause equipment damage,
injury, or death.

WARNING

Do not use Copley Motion Objects to implement an Emergency Stop

An Emergency Stop must be hardwired directly to the amplifier. Do not
depend on the Copley Motion Objects software to provide for a timely
emergency stop. Due to the non-deterministic nature of Microsoft Windows,
the software cannot guarantee a timely emergency stop operation.

Failure to adhere to this warning can cause equipment damage,
injury, or death.

!

!

CMO Programmer’s Guide About This Manual

 8 Copley Controls

Revision History
Revision Date Applies to Comments

00 August 2014 CMO Version 4.0
and 5.0

Re-formatted text, added descriptions for
new methods and properties.

01 June 2015 CMO V5.1 Release Added info for multi-axis CAN drives. Added
table to the debug levels. Added description
of new Linkage settings object.

02 July 2018 CMO V5.2 Release Added info for LSSObj.

Added info for PDO mapping objects.

Added drive configuration file methods.

03 November 2018 CMO V6.0 Edited for CMO V6.0

04 December 2021 CMO V6.1.3.0 Added PathPlanningObj and
PvtConstAccelTrjObj classes as well as their
respective methods in the LinkageObj class.

CMO Programmer’s Guide Fundamental Concepts and Procedures

Copley Controls 9

2. Fundamental Concepts and Procedures
2.1 Introduction

The Copley Motion Objects (CMO) simplifies the creation of Windows-based software for the

control of Copley Controls amplifiers over CANopen network. CMO is an API that gives

programmers access to an amplifier’s CANopen functions without having to learn the

complexities of the underlying network protocol. CMO is a managed .NET assembly which means

that it can be used with client code that supports .NET assemblies. For control of Copley Controls

amplifiers over EtherCAT network, use CMO V5.x.

2.2 System Requirements

Operating System and Hardware

• Operating Systems Supported: Windows 10, 8, and 7.

• CMO supports all the Copley CAN Interface cards

Latest version of firmware is recommended and can be downloaded from Copley’s website:

www.copleycontrols.com.

http://www.copleycontrols.com/

CMO Programmer’s Guide Fundamental Concepts and Procedures

Copley Controls 10

2.3 .NET Framework Compatibility
CMO is designed as a .NET Assembly, which means that it can be used in applications that are

designed to run under the Microsoft .NET Framework. This includes applications built with Visual

Studio. Occasionally, new versions of the .NET Framework released that are not backward

compatible with earlier versions. When this occurs, Copley must branch CMO and maintain

multiple versions. This recently occurred when V4.0 of the .NET Framework was released. This

version is not backward-compatible with any application that targeted version 2.0 through 3.5,

and the result was to branch CMO to V4.x and V5.x.

CMO V4.x
The V4.x branch of CMO is compatible with .NET versions 2.0 through 3.5. The examples

installed with V4.x were made with Visual Studio 2008 and target the .NET Framework 3.5. This

CMO branch is not compatible with applications that target the .NET Framework 4.0 and 4.5.

Note: CMO V4.x is a legacy software.

CMO V5.x / V6.x
The V5.x / V6.x branches of CMO are compatible with .NET versions 4.0 through 4.5. The

examples installed with V5.x / V6.x were made with Visual Studio 2010 and Visual Studio 2017

and target the .NET Framework 4.0. These CMO branches are not compatible with applications

that target the .NET framework 2.0 through 3.5.

Note: CMO V5.x is a legacy software.

To determine which versions of the .NET Framework are installed on your PC, go to the Control

Panel and select Programs and Features (on Win XP, choose Add or Remove Programs).

Scroll through the list of installed programs to the entries for Microsoft .NET Framework as

shown below:

2.4 32-bit vs. 64-bit Compatibility

Starting with V5.0, the installer allows the user to choose either the 32-bit or 64-bit version of

CMO to be installed. This is done so that the user can target a different architecture when

compiling their application with CMO. For instance, an application can be set up to target a 32-

bit architecture, even though it is being compiled on a 64-bit machine. In this case, the user

must install the 32-bit version of CMO so that it will work with their application on the 32-bit

architecture. Please consult the owner’s manual for your compiler for information on settings

the target architecture.

Important Note

The application that uses CMO must target the same architecture as the version of CMO that is

installed. The “any CPU” setting in Microsoft Visual Studio should never be used with CMO.

CMO Programmer’s Guide Fundamental Concepts and Procedures

 11 Copley Controls

Using this setting with either the 32-bit or 64-bit version of CMO will cause unpredictable

behavior in the application (e.g. exceptions and breakpoints may not work).

2.5 CANopen Network

Addressing and Bit Rate
Use CME software to set up the amplifier’s CAN node id and bit rate. CMO supports the following

bit rates: 1Mb/s, 800kb/s, 500kb/s, 250kb/s, 125kb/s, 50kb/s, and 20kb/s.

CAN addresses (node id’s) have a range of 1 to 127. Setting the node id to 0 disables the CAN

operation for that amplifier.

Multi-axis
For multi-axis amplifiers, each axis is treated as a separate node on the CAN network and

requires its own AmpObj. Only one node id is configured for a multi-axis drive. That node id is

assigned to axis A. The amplifier automatically configures the subsequent axes by increments

of one. Therefore, if the amplifier was configured with a node id of 1 on a four-axis drive, then

the node ids for that amplifier will be:

Axis A: 1

Axis B: 2

Axis C: 3

Axis D: 4

2.6 Communication Errors

Access Denied
This error indicates that CMO could not find the network hardware (CAN card, or device drivers).

SDO Timeout:
This error indicates that an SDO was sent, but no response was received. Possible causes are:

• The address is incorrect

• The bit rate is incorrect

• The wrong CAN channel is connected on a multiple-channel CAN card

• The CAN bus is improperly terminated

• CAN bus is wired improperly or disconnected

• Firewall is enabled

2.7 Node Guarding

Overview
Node guarding is a CANopen device-monitoring feature. The network manager configures the

amplifier to expect node-guarding messages at some interval. The network manager then sends

a message to the amplifier at that frequency, and the amplifier responds with a node-guarding

message. This allows both the network manager and the amplifier to identify a network failure

if the guarding messages stop. CMO can turn node guarding on or off and change the interval.

If the amplifier detects that the guarding messages stop, it will abort a move in progress and

set the AMPEVENT_NODEGUARD bit active in the AmpEvent status register. If node guarding is

turned on, we recommend monitoring amplifier events for the node guard event. This can be

done through the EventObj or through a timer, which periodically reads the event mask.

Possibility of False Node Guarding Conditions
In a Windows environment, various factors can delay node-guarding messages, resulting in

“false” node guarding conditions. These factors include the non-deterministic nature of Windows

operating systems and the performance effects of other processes running on the PC. Thus, by

CMO Programmer’s Guide Fundamental Concepts and Procedures

 12 Copley Controls

default, node guarding is disabled in CMO. If node guarding is required, do not enable node

guarding without first testing the performance characteristics and usage load of the PC being

used, and adjusting the node guarding parameters accordingly using the ampSettingObj

properties.

2.8 Exception Handling
If an error occurs, CMO reports the error by throwing an exception. Try/catch blocks should

encapsulate all calls to CMO. For better error handling, each program should include error-

handling procedures to prevent unexpected motion from occurring.

2.9 Units

Default Amplifier Units
• Position or Distance: encoder counts

• Velocity: 0.1 encoder counts per second

• Acceleration: 10 encoder counts per second2

• Deceleration: 10 encoder counts per second2

• Jerk: 100 encoder counts per second3

User-Defined Units
The AmpObj property CountsPerUnit is a scaling factor for converting between a drive’s default

units and user-defined units.

Example

To set user units to millimeters with a 5-micron encoder on a linear motor:

Set CountsPerUnit = 200, since there are 200 encoder counts in one millimeter.

2.10 Stepnet Amplifiers

Stepper and Servo Modes
On power up /reset, Stepnet amplifiers start in stepper mode. If it is necessary to switch from

stepper mode to servo mode, change the AmpModeWrite property of the AmpObj to one of the

servo modes listed in CML_AMP_MODE. This should be done immediately after amplifier

initialization.

In the following example, the amplifier is initialized and then the amplifier’s mode of operation

is switched to the servo Can profile mode:

 ampObj.Initialize(canOpen, 1)

 ampObj.AmpModeWrite = CML_AMP_MODE.AMPMODE_SERVO_CAN_PROFILE

 Open Loop Stepper Mode Actual Position and Velocity
When running open loop stepper mode, actual position and actual velocity readings remain at

zero. The motor’s commanded position can be monitored with AmpObj.PositionCommand (Units:

microsteps).

The motor’s commanded velocity can be monitored with AmpObj.TrajectoryVel (Units

microsteps/second).

When the amplifier is disabled, PositionCommand goes to zero because the amplifier cannot tell

if the motor moves while disabled. If the amplifier is enabled, relative and absolute moves can

be made based on PositionCommand.

CMO Programmer’s Guide Fundamental Concepts and Procedures

 13 Copley Controls

Stepper Mode with Encoder Actual Position and Velocity
When running in stepper mode with an encoder, actual position can be monitored with

AmpObj.PositionActual (Units: microsteps). Actual velocity can be monitored with

AmpObj.VelocityLoad (Units microsteps/second).

NOTE: Actual velocity can also be monitored with AmpObj.VelocityActual, but the units will be

in encoder counts/second. This is not recommended, because user units will also be applied to

this value.

CMO Programmer’s Guide Using CMO in an application

Copley Controls 14

3. Using CMO in an application

3.1 Building an Application
Regardless of the programming language or development environment, there are common steps

to follow when building an application that uses CMO.

1 Determine the target CPU for the application to run on. This must be either x86 (32-bit)

or x64 (64-bit). “Any CPU” cannot be chosen with CMO. See 32-bit vs. 64-bit

Compatibility.

2 Determine the target .NET Framework for the application to run on. See .NET Framework

Compatibility.

3 Install the version of CMO to match the target CPU in step 1. See Download and Install

CMO.

4 Create the project for the application and set the target CPU and .NET Framework.

5 Add a reference to CMO in the project. See

6 Adding a Reference to CMO in Visual Studio.

7 Declare a variable for the network object.

8 Declare one or more variables for the node objects (AmpObj or IOObj) and create

instances of those variables.

9 Declare and instantiate settings objects for each node object declared in step 7

(AmpSettingsObj or ioSettingsObj).

10 Set the enableOnInit property of each settings object to False.

11 In the method or procedure that is called when the application, initialize the network and

node objects. See Object Initialization Sequence.

12 Enclose all code that accesses CMO methods or properties with exception handling code.

3.2 Before Running a CMO Program
The following general steps must be completed before running any CMO program, including

the demonstration programs described in this manual:

1 Review Product Warnings at the beginning of this manual.

2 Set up and tune the motor and amplifier using Copley Controls CME software. Set the

CAN node ID and bit rate.

3 Install CMO.

4 Install the CAN interface card and drivers.

5 Connect the amplifier, motor, and network.

6 Read through the steps in

7 Building an Application to make sure that the application is set up properly.

3.3 Download and Install CMO
1 Go to www.copleycontrols.com.

2 Navigate to Software and select CMO.

3 Navigate to the folder where CMO was downloaded to and extract the contents of

CMO.zip.

4 Run Setup.exe and follow the instructions on the installer screens. When prompted,

choose the version of CMO that your application is targeting (32-bit or 64-bit). It is

recommended to install CMO in the default location.

http://www.copleycontrols.com/

CMO Programmer’s Guide Using CMO in an application

 15 Copley Controls

3.4 Adding a Reference to CMO in Visual Studio
From the Project menu, choose the Add Reference menu item, then select the Browse tab.

Browse to the folder where the CMO folder is installed.

Select CMO.dll and click ok.

CMO Programmer’s Guide Using CMO in an application

 16 Copley Controls

3.5 Object Initialization Sequence
Every CMO application requires the creation and initialization of a network object, and node

objects for each node on the network. These objects should always be initialized in the following

order:

1 Network objects (CANOpenObj).

2 Node objects (AmpObj or IOObj).

Initializing the network establishes a connection to the network hardware (but not out on the

network). If the call to the network object’s initialize () method is successful, then CMO was

able to find the network drivers and hardware. Before initializing, the network properties should

be set if they are different than the defaults. See the properties of Error! Reference source n

ot found. for details. Initializing the nodes establishes communication to that node on the

network. If the call to the node’s initialize method is successful, then CMO was able to

communicate with the node.

CANopen Initialization
'Set the bit rate to 1 Mbit per second

canOpen.BitRate = CML_BIT_RATES.BITRATE_1_Mbit_per_sec

'Indicate that channel 0 of a Copley CAN card should be used

canOpen.PortName = "copley0"

canOpen.Initialize()

ampSettings.enableOnInit = False

'Initialize the AmpObj with the settings object

ampObj.InitializeExt(canOpen, 1, ampSettings)

Initialization Errors
If the call to the network’s initialize method fails, then CMO cannot find and initialize the

hardware. This is typically caused by one of the following:

• Network hardware not present

• CAN card drivers not installed

• Incorrect portName specified

• Incorrect channel specified

If the call to the node’s initialize method fails, then CMO cannot communicate with the node.

Typical causes are:

• Incorrect bit rate

• No termination on the bus

• Network settings of the program do not match the node (bit rate, node id, etc.).

• Node is not connected to the network

• Node is not powered up

• Node has a fault or is not enabled and the ampSettingObj was not used to turn off

enableOnInit

CMO Programmer’s Guide Network Objects

Copley Controls 17

4. Network Objects
CANopenObj

Methods

Initialize ()

Description: Initializes the CANopen network.

Parameters: None

ClearErorFrameCounter ()

Description: Clears the CAN error frame counter.

Parameters: None

Properties

ErrorFrameCounter

Type: Integer

Description: Read-only. The number of error frames received over then CAN network since

the last time the counter was cleared

Units: None

Default: None

BitRate

Type: CML_BIT_RATES

Description: CANopen Bit Rate.

Units: None

Default: 1 Mb/s

CML_BIT_RATES

BITRATE_1_Mbit_per_sec = 1000000

BITRATE_800_Kbit_per_sec = 800000

BITRATE_500_Kbit_per_sec = 500000

BITRATE_250_Kbit_per_sec = 250000

BITRATE_125_Kbit_per_sec = 125000

BITRATE_50_Kbit_per_sec = 50000

BITRATE_20_Kbit_per_sec = 20000

PortName

Type: String

Description: Port name for the network hardware. The port name is a combination of the CAN

card name and the channel number.

• CAN Card: Copley

• Port Name: copley0, copley1

Units: None

Default: The port name defaults to channel 0 of the first supported CAN card found.

CMO will search for the CAN cards in numerical order.

CMO Programmer’s Guide Linkage

Copley Controls 18

5. Amplifier and Related Objects

5.1 ampSettingsObj

Overview
The Amp Settings Object contains information about the amplifier’s network settings. All the

properties have both read and write access. This object is passed in as a parameter in the

InitializeExt method of the Amplifier Object to customize the network settings.

Example:
1 Declare and create an instance of ampSettingsObj.

Dim ampSettings As ampSettingsObj
ampSettings = New ampSettingsObj()

2 Change one or more properties of the ampSettingsObj.

ampSettings.enableOnInit = False

3 Call one of the Extended Initialization methods of the ampObj.

ampObj.InitializeExt(canOpen, CAN_ADDRESS, ampSettings)

Properties

guardTime

Type: Short

Description: Node guarding guard time. This property gives the node-guarding period

for use with this node. This is the period between node guarding request

messages sent by the master controller.

Units: mS

Default: 200

heartbeatPeriod

Type: Short

Description: Configures the heartbeat period used by this amplifier to transmit its

heartbeat message. If this property is set to zero, then the heartbeat

protocol is disabled on this node.

Units: mS

Default: 0

heartbeatTimeout

Type: Short

Description: Additional time to wait before generating a heartbeat error.

Units: mS

Default: 0

CMO Programmer’s Guide Linkage

 19 Copley Controls

lifeFactor

Type: Short

Description: Node guarding lifetime factor. The lifetime factor is treated as a multiple

of the guard time. If this property and the node guard time are both non-

zero, and the heartbeatTimeout is zero, then node guarding will be setup

for the amplifier.

Units: mS

Default: 3

resetOnInit

Type: Boolean

Description: If True, the amplifier will be reset when it is initialized. This has the

advantage of clearing out any fault conditions and putting the amplifier in

a known state.

Units: None

Default: False

enableOnInit

Type: Boolean

Description: Enable amplifier at initialization. If true, then the amplifier will be enabled

at the end of a successful initialization. If false, the amplifier will be

disabled at the end of a successful initialization

Units: None

Default: True

synchID

Type: Integer

Description: Synch object CAN message ID. This is the message ID used for the synch

message.

Units: None

Default: 128 (0x00000080)

synchPeriod

Type: Integer

Description: Synch object period. The synch object is a message that is transmitted

by one node on a CANopen network at a fixed interval. This message is

used to synchronize the devices on the network.

Units: microseconds

Default: 10000

synchProducer

Type: Boolean

CMO Programmer’s Guide Linkage

 20 Copley Controls

Description: If true, this node will produce synch messages. If 'synchUseFirstAmp'

property is set to true, this property will not be used and will be

overwritten during initialization.

Units: None

Default: False

synchUseFirstAmp

Type: Boolean

Description: Use first initialized amplifier as synch producer. If this setting is true

(default), then the first amplifier to be initialized will be set as the synch

producer, and all other amplifiers will be setup as synch consumers.

Units: None

Default: True

timeStampID

Type: Integer

Description: High-resolution time stamp CAN ID. The time stamp is a PDO that is

generated by the synch producer. It is used to synchronize the clocks of

the amplifiers. Setting this to zero will disable the time stamp message.

Units: None

Default: 384 (0x00000180)

5.2 Amplifier Initialization

Methods

Initialize (canOpenObj As CANopenObj, nodeId As Short)

Description: Initializes the amplifier with the CANopen network using default Amplifier

Settings.

Parameters:

canOpenObj An instance of a CanOpenObj that has already been

initialized

Units: None

nodeId The CAN node ID of the amplifier Units: None

InitializeExt (canOpenObj As CANopenObj, nodeId As Short, ampSettings As

AmpSettingsObj)

Description: Initializes amplifier with the CANOpenObj, the specified node ID, and the

AmpSettingsObj.

Parameters:

canOpenObj An instance of a CanOpenObj that has already been

initialized

Units: None

nodeId The node ID of the amplifier Units: None

ampSettingsObj An instance of an AmpSettingsObj with customized

settings

Units: None

ReInit ()

Description: Re-initializes an amplifier using the same properties that were previously used.

Parameters: None

CMO Programmer’s Guide Linkage

 21 Copley Controls

5.3 Amplifier Enable/Disable

Methods

Enable ()

Description: Software enables the amplifier.

Parameters: None

Disable ()

Description: Software disables the amplifier.

Parameters: None

Properties

IsHardwareEnabled

Type: Boolean

Description: Read-only. Returns True if amplifier’s Enable input is currently active.

Amplifier outputs may still be disabled due to error condition.

Units: None

Default: None

IsSoftwareEnabled

Type: Boolean

Description: Read-only. Returns True if amplifier is software enabled. Amplifier

outputs may still be disabled due to error condition.

Units: None

Default: None

IsPWMEnabled

Type: Boolean

Description: Read-only. Returns true if the amplifier's PWM outputs are currently

enabled.

Units: None

Default: None

CMO Programmer’s Guide Linkage

 22 Copley Controls

5.4 Objects Contained by AmpObj

Overview
To reduce the number of methods and properties of the AmpObj, several objects were created

and added to the AmpObj as a property. Each sub object contains a set of related method and

properties.

Object Description

AmpInfo Read-only amplifier characteristics.

MotorInfo Motor and feedback parameters.

CurrentLoopSettings Parameters used for tuning the current loop.

VelocityLoopSettings Parameters used to tune the velocity loop.

PositionLoopSettings Parameters used to tune the position loop.

HomeSettings Used to configure homing.

ProfileSettings Used to configure a point-to-point move.

TrackingWindows Used to configure the position and velocity error windows.

Example
The following example demonstrates the use of the objects contained by the AmpObj. Please

note that the AmpObj must be initialized prior to accessing the sub-objects.

1 Create an instance. There are two ways to do this:

Obtain the instance from the AmpObj. This is the preferred method, because it sets

all of the properties of the ProfileSettings object equal to the values set in the AmpObj.

Dim profileSettings As ProfileSettingsObj
profileSettings = ampObj.ProfileSettings

 OR

Create a new instance. This sets default values for all of the properties.

Dim profileSettings As ProfileSettingsObj

profileSettings = New ProfileSettingsObj

2 Modify one or more properties.

profileSettings.ProfileType = CML_PROFILE_TYPE.PROFILE_SCURVE

3 Write the new settings to the AmpObj

ampObj.ProfileSettings = profileSettings

5.5 AmpInfoObj
The properties of the AmpInfoObj provide information about the amplifier. All the properties

are Read-Only.

Properties

crntCont

Type: Double

Description: Amplifier continuous current rating.

Units: 0.01 A

CMO Programmer’s Guide Linkage

 23 Copley Controls

crntPeak

Type: Double

Description: Amplifier peak current rating

Units: 0.01 A

crntScale

Type: Short

Description: Current scaling factor

Units: None

crntTime

Type: Double

Description: The maximum time for which the amplifier is rated to output peak current

Units: mS

mfgInfo

Type: String

Description: Amplifier's manufacturing information string

Units: None

mfgName

Type: String

Description: Name of the amplifier manufacturer

Units: None

mfgWeb

Type: String

Description: Web address of the manufacturer

Units: None

model

Type: String

Description: Model number string

Units: None

modes

Type: Integer

Description: Supported modes of operation as described in CANopen Profile for Drives and

Motion Control (DSP 402).

Bit Mode Description

0 Position profile mode (pp).

2 Profile velocity mode (pv).

3 Profile torque mode (tq).

5 Homing mode (hm).

6 Interpolated position mode (ip).

7 Cyclic sync position mode (csp).

8 Cyclic sync velocity mode (csv).

9 Cyclic sync torque mode(cst).

Units: None

CMO Programmer’s Guide Linkage

 24 Copley Controls

pwm_dbcont

Type: Short

Description: PWM dead time used at or above the continuous current limit

Units: servo cycles

pwm_dbzero

Type: Short

Description: PWM deadband at zero current

Units: servo cycles

pwm_off

Type: Short

Description: PWM off time

Units: tens of nanoseconds

pwmPeriod

Type: Double

Description: PWM period

Units: tens of nanoseconds

refScale

Type: Short

Description: Reference scaling factor

Units: None

serial

Type: Integer

Description: Serial number of the amplifier’s printed circuit board

Units: None

servoPeriod

Type: Double

Description: Servo loop update period as a multiple of the pwm period

Units: None

swVer

Type: String

Description: The firmware version number

Units: None

tempHyst

Type: Double

Description: Temperature hysteresis for over temperature fault

Units: degrees C

tempMax

Type: Double

Description: Set point for over temperature fault

Units: degrees C

CMO Programmer’s Guide Linkage

 25 Copley Controls

type

Type: Short

Description: Amplifier type

Units: None

voltMax

Type: Double

Description: Set point for an over voltage fault

Units: 0.1V

voltMin

Type: Double

Description: Set point for under voltage fault

Units: 0.1 V

voltScale

Type: Short

Description: Voltage scaling factor

Units: 0.1 V

aencScale

Type: Short

Description: The analog encoder-scaling factor.

Units: None

regenPeak

Type: Short

Description: The internal regen circuit peak current limit

Units: 0.01 A

regenCont

Type: Short

Description: The internal regen circuit continuous current limit

Units: 0.01 A

regenTime

Type: Short

Description: The internal regen circuit time at peak current

Units: mS

voltHyst

Type: Double

Description: Bus voltage hysteresis for over voltage shutdown

Units: 0.1 Volts

CMO Programmer’s Guide Linkage

 26 Copley Controls

5.6 Motor/Feedback Information

Methods

ReadAnalogFeedback (Sin As Short, Cos As Short)

Description: Reads the raw voltage on the two analog feedback inputs.

Parameters:

Sin This parameter will contain the value read on the

analog feedback Sin input upon function return

Units: 0.1 mV

Cos This parameter will contain the value read on the

analog feedback Sin input upon function return

Units: 0.1 mV

Properties

HallState

Type: Short

Description: Read-only. Contains the current digital hall sensor state. The Hall state is

the value of the Hall lines AFTER the ordering and inversions specified in

the Hall wiring configuration have been applied.

Units: None

Default: None

PhaseAngle

Type: Short

Description: Read-only. Contains the motor phase angle. The phase angle describes

the motor's electrical position with respect to its windings

Units: degrees

Default: None

MotorInfoObj

Type: MotorInfoObj

Description: This property contains the MotorInfoObj.

Units: None

Default: None

MotorInfoObj

Properties

backEMF

Type: Double

Description: Back EMF constant

Units: Rotary: V/KRPM, Linear: V/m/S

Default: 0.01

brakeDelay

Type: Short

Description: Delay between applying brake & disabling PWM.

CMO Programmer’s Guide Linkage

 27 Copley Controls

Units: mS

Default: 0

brakeVel

Type: Double

Description: Velocity below which the brake will be applied.

Units: User-defined units/second.

Default: 0.0

ctsPerRev

Type: Integer

Description: Encoder counts/revolution. Rotary motors only

Units:

Default: 4000

eleDist

Type: Integer

Description: Motor electrical distance. Linear motors only.

Units: encoder units/electrical phase

Default: 100000

encRes

Type: Short

Description: Encoder resolution. Linear motors only

Units: encoder units/count

Default: 100

encReverse

Type: Boolean

Description: Reverse encoder direction if True.

Units:

Default: False

encType

Type: Short

Description: Motor Encoder type

Value Description

0 Incremental quadrature encoder.

1 No encoder.

2 Analog encoder.

3 Secondary quad encoder from input lines.

4 Low frequency analog encoder.

5 Resolver.

6 Use digital hall signals for position & velocity estimates.

7 Analog encoder updated at current loop rate.

8 Reserved for custom encoder.

9 Panasonic

10 SPI command (reserved for custom firmware use).

CMO Programmer’s Guide Linkage

 28 Copley Controls

11 EnDat

12 SSI

13 BiSS

14 Serial encoders from Sanyo Denki, Tamagawa, Panasonic and HD
systems.

15 Custom encoders from HD systems.

16 Simple analog potentiometer feedback.

17-

19

Reserved for custom encoder.

Units:

Default: 0

encUnits

Type: Short

Description: Encoder units. Linear motor only

Units:

Default: 0

hallOffset

Type: Short

Description: Hall offset

Units: degrees

Default: 0

hallType

Type: Short

Description: Type of hall sensors on the motor.

Value Description

0 No hall sensors available.

1 Digital hall sensors.

2 Analog hall sensors.

Units: None

Default: 1

hallWiring

Type: Short

Description: Hall wiring code. This bit-mapped value defines the wiring of the hall sensors.

Bit Description

0-2 The hall wiring code which defines the order of the hall connections

Hall Wiring Code Description

0 U V W

1 U W V

2 V U W

3 V W U

4 W V U

5 W U V

6,7 Reserved

3 Reserved.

4 Invert W hall input if set.

CMO Programmer’s Guide Linkage

 29 Copley Controls

5 Invert V hall input if set.

6 Invert U hall input if set.

7 Reserved.

8 Swap analog halls if set.

9-15 Reserved.

Units: None

Default: 0

hallVelocityShift

Type: Short

Description: This value is used to scale up the calculated velocity in Hall velocity mode (Halls

used for feedback in velocity mode). It specifies a left shift value for the position

and velocity information calculated in that mode

Units: None

Default: 1

hasBrake

Type: Boolean

Description: Motor has a brake if True

Units:

Default: False

inductance

Type: Double

Description: Motor inductance

Units: Henrys

Default: 0.001

inertia

Type: Double

Description: Inertia

Units: Kg-cm2

Default: 0.00001

mfgName

Type: String

Description: Name of the motor manufacturer

Units: None

Default: None

model

Type: String

Description: Motor model number

Units: None

Default: None

mtrReverse

Type: Boolean

Description: Reverse motor wiring if true

Units: None

Default: False

poles

Type: Short

Description: Number of pole pairs (number of electrical phases) per rotation. Rotary motors

only

CMO Programmer’s Guide Linkage

 30 Copley Controls

Units:

Default: 2

resistance

Type: Double

Description: Motor resistance

Units: 

Default: 1.0

stopTime

Type: Short

Description: Delay between disabling amplifier and applying brake. During this time,

amplifier attempts to stop motor

Units: mS

Default: 0

tempSensor

Type: Boolean

Description: Motor has a temperature sensor

Units: None

Default: False

trqConst

Type: Double

Description: Torque constant (rotary), Force constant (linear). For stepper motors, the value

returned is Rated Torque/Rated Current

Units: Rotary: Newton Meters/A; Linear: Newtons/A

Default: 0.001

trqCont

Type: Double

Description: Continuous torque (rotary), Continuous force (linear). This parameter is not

used for stepper motors

Units: Rotary: Newton Meters; Linear: Newtons

Default: 0.0001

trqPeak

Type: Double

Description: Peak torque (rotary), Peak force (linear), Rated Torque (stepper motors)

Units: Rotary, Stepper: Newton Meters; Linear: Newtons

Default: 0.0001

type

Type: Short

Description: Bit-mapped value that contains the motor type and family.

Bits Description

0 - 1 Motor Type: 0 = Rotary, 1 = Linear

5 - 6 Motor Family: 1 = Brush, 2 = Stepper, 3 =

Brushless

Units: None

Default: 0

velMax

Type: Double

Description: Maximum motor velocity

Units: User-defined units/second.

Default: 1.0

CMO Programmer’s Guide Linkage

 31 Copley Controls

encShift

Type: Short

Description: Analog feedback interpolation value (used only with Analog feedback)

Units: None

Default: 0

ndxDist

Type: Integer

Description: Index mark distance (reserved for future use)

Units: None

Default: 0

stepsPerRev

Type: Integer

Description: Microsteps/revolution (used for Stepnet amplifiers)

Units: None

Default: 4000

loadEncType

Type: Short

Description: Load Encoder Type. There are two different encodings of this property. The

model/firmware version determines which encoding should be used.

 For Feature Set E (all versions) and V2.10 or greater for Feature Set C and D,

the encoding is as follows:

Bit Description

0-11 Encoder type

Value Description

0 No load encoder present.

1 Primary (differential) quadrature encoder.

2 Analog encoder.

3 Secondary quadrature encoder from input lines.

4 Low-frequency analog encoder.

5 Resolver.

6 Use digital hall signals for position & velocity estimates.

7 Analog encoder updated at current loop rate.

8 Reserved for custom encoder.

9 Panasonic

10 SPI command (reserved for custom firmware use).

11 EnDat

12 SSI

13 BiSS

14 Serial encoders from Sanyo Denki, Tamagawa, Panasonic

and HD systems.

15 Custom encoders from HD systems.

12 Always set to use this new encoding.

13 Linear if set, rotary if clear.

14 If set, do not use this encoder for position feedback (passive mode).

15 Reserved and must be set to zero.

 For Feature Set A and B, the encoding is as follows:

CMO Programmer’s Guide Linkage

 32 Copley Controls

Bit Description

0-3 Encoder type

Value Description

0 No load encoder present.

1 Primary (differential) quadrature encoder.

2 Analog encoder.

3 Secondary quadrature encoder from input lines.

4 Low-frequency analog encoder.

5 Resolver.

6 Use digital hall signals for position & velocity estimates.

7 Analog encoder updated at current loop rate.

8 Reserved for custom encoder.

9 Panasonic

10 SPI command (reserved for custom firmware use).

11 EnDat

12 SSI

13 BiSS

14 Serial encoders from Sanyo Denki, Tamagawa, Panasonic
and HD systems.

15 Custom encoders from HD systems.

4 Linear if set, rotary if clear.

5 If set don’t use this encoder for position feedback (passive mode).

6-15 Reserved and must be set to zero.

Units: None

Default: 0

loadEncRes

Type: Integer

Description: Load Encoder Resolution: This is encoder counts/rev for rotary encoders and

nanometers/count for linear encoders

Units:

Default: 0

loadEncReverse

Type: Boolean

Description: Load Encoder Reverse: Reverse load encoder direction if true

Units:

Default: False

resolverCycles

Type: Short

Description: Number of resolver cycles per motor revolution.

Units:

Default: 1

CMO Programmer’s Guide Linkage

 33 Copley Controls

5.7 Current Loop

Methods

ReadMotorCurrent (Ucurrent As Short, Vcurrent As Short)

Description: The actual current values read directly from the amplifier's current sensors. Note

that if the motor wiring is being swapped in software, the U and V reading will be

swapped.

Parameters:

Ucurrent This parameter will contain the value read on the U

winding upon function return

Units: 0.01 A

Vcurrent This parameter will contain the value read on the V

winding upon function return

Units: 0.01 A

Properties

CurrentLimited

Type: Short

Description: Read-only. The limited motor current. The commanded current is passed to the

current limiter. The output of the current limiter is the limited current, which is

passed as an input to the current loop

Units: 0.01 A

Default: None

CurrentCommand

Type: Short

Description: Read-only. This current is the input to the current limiter.

Units: 0.01 A

Default: None

CurrentActual

Type: Short

Description: Read-only. Gets the actual motor current. This current is based on the

amplifier’s current sensors and indicates the portion of current that is being used

to generate torque in the motor.

Units: 0.01 A

Default: None

TorqueTarget

Type: Short

Description: In profile torque mode, this property is an input to the amplifier’s internal

trajectory generator. Any change to the target torque triggers an immediate

update to the trajectory generator

Units: Thousandths of the rated motor torque

Default: 0

CMO Programmer’s Guide Linkage

 34 Copley Controls

TorqueDemand

Type: Short

Description: Read-only. In Profile Torque mode, this is the output value of the torque limiting

function

Units: Thousandths of the rated motor torque

Default: None

TorqueActual

Type: Short

Description: Read-only. Instantaneous torque in the motor

Units: Thousandths of the rated motor torque

Default: None

TorqueSlope

Type: Integer

Description: Torque acceleration or deceleration

Units: Thousandths of the rated motor torque per second

Default: 0

CurrentLoopSettings

Type: CurrentLoopSettingsObj

Description: An instance of the CurrentLoopSettingsObj which contains the values set in the

amplifier.

Units: None

Default: None

CurrentLoopSettingsObj

Properties

CrntLoopKp

Type: Short

Description: Current loop proportional gain value

Units: None

Default: 0

CrntLoopKi

Type: Short

Description: Current loop integral gain value

Units: None

Default: 0

CrntLoopCrntOffset

Type: Short

Description: Current loop offset value

Units: 0.01 A

Default: 0

CrntLoopPeakCrntLim

Type: Short

Description: Peak current limit. The maximum current that can be applied to the load at any

time. In stepper mode, this is the boost current

Units: 0.01 A

Default: 0

CMO Programmer’s Guide Linkage

 35 Copley Controls

CrntLoopContCrntLim

Type: Short

Description: Continuous current limit. Max current that can continuously be applied to load.

In stepper mode, this is the run current

Units: 0.01 A

Default: 0

CrntLoopPeakCrntTime

Type: Short

Description: Time at peak current limit. In stepper mode, this is time at boost current

Units: mS

Default: 0

CrntLoopStepHoldCrnt

Type: Short

Description: The Stepper Hold Current. Current used to hold the motor at rest

Units: 0.01A

Default: 0

CrntLoopStepRunToHoldTime

Type: Short

Description: The Stepper Run To Hold Time. The period beginning when a move is complete,

to when the output current is switched to the hold current

Units: mS

Default: 0

CrntLoopVolControlDelayTime

Type: Short

Description: The Voltage Control Delay Time. If set to zero, feature is disabled.

Units: mS

Default: 0

5.8 Velocity Loop

Properties

VelocityLimited

Type: Double

Description: Read-only. Gets the limited velocity, which is the result of applying the velocity

limiter to the commanded velocity.

Units: User-defined units/second

Default: None

VelocityCommand

Type: Double

Description: Read-only. The commanded velocity is the velocity value passed to the velocity

limiter, and, from there, to the velocity control loop

Units: User-defined units/second

Default: None

VelocityActual

Type: Double

CMO Programmer’s Guide Linkage

 36 Copley Controls

Description: Read-only. The motor velocity is calculated by the amplifier based on the change

in position. For dual encoder systems, the load velocity can be queried by

reading the VelocityLoad property

Units: User-defined units/second

Default: None

VelocityLoad

Type: Double

Description: Read-only. The load velocity is estimated by the amplifier based on the change

in position seen at the load encoder. For dual encoder systems, the motor

velocity can be queried reading the VelocityActual property

Units: User-defined units/second

Default: None

VelocityLoopSettings

Type: VelocityLoopSettingsObj

Description: This property contains the VelocityLoopSettings

Units: None

Default: None

VelocityLoopSettingsObj

Properties

VelLoopKp

Type: Short

Description: Velocity loop proportional gain value.

Units: None

Default: 0

VelLoopKi

Type: Short

Description: Velocity loop integral gain value.

Units: None

Default: 0

VelLoopKaff

Type: Short

Description: Velocity loop acceleration feed forward value.

Units: None

Default: 0

VelLoopShift

Type: Short

Description: Velocity shift value. After velocity loop is calculated, the result is right-shifted

this many times to arrive at the commanded current value. This allows the

velocity loop gains to have reasonable values for high-resolution encoders.

Units: None

Default: 0

VelLoopMaxVel

Type: Double

Description: Velocity loop maximum allowed velocity. Limits the velocity command before the

velocity loop uses it to calculate output current.

Units: User-defined units/second

Default: 0.0

CMO Programmer’s Guide Linkage

 37 Copley Controls

VelLoopMaxAcc

Type: Double

Description: Velocity loop maximum acceleration limit. Limits the rate of change of the

velocity command input to the velocity loop. It is used when the magnitude of

the command is increasing.

Units: User-defined units/second2

Default: 0.0

VelLoopMaxDec

Type: Double

Description: Velocity loop maximum deceleration limit. Limits the rate of change of the

velocity command input to the velocity loop. It is used when the magnitude of

the command is decreasing.

Units: User-defined units/second2

Default: 0.0

VelLoopEstopDec

Type: Double

Description: Deceleration used for emergency stop. Setting this value to zero indicates that

the deceleration is unlimited.

Units: User-defined units/second2

Default: 0.0

5.9 Position Loop

Properties

PositionError

Type: Double

Description: The position error (difference between position command and actual position).

Units: User-defined units

Default: None

PositionCommand

Type: Double

Description: The instantaneous position command. This position is the command input to the

servo loop. The position command is calculated by the trajectory generator and

updated every servo cycle.

Units: User-defined units

Default: None

PositionActual

Type: Double

Description: The actual position used by the servo loop. For dual encoder systems, this

property contains the load encoder position and the PositionMotor property

should be used to read the motor encoder position.

Units: User-defined units

Default: None

PositionMotor

Type: Double

Description: The actual motor position. For single encoder systems, this value is identical to

the PositionActual property. For dual encoder systems, this property contains

CMO Programmer’s Guide Linkage

 38 Copley Controls

the actual motor position and the PositionActual property may be used to get

the load encoder position.

Units: User-defined units

Default: None

PositionLoadEncoder

Type: Double

Description: Dual encoder systems only. This value is the load encoder position and is the

identical to the PositionActual property. When the load encoder is configured for

passive mode, this value is the passive load encoder value. This property is not

used in single encoder systems.

Units: User-defined units

Default: None

PositionLoopSettings

Type: PositionLoopSettingsObj

Description: This property contains the PositionLoopSettings.

Units: None

Default: None

PositionLoopSettingsObj

Properties

PosLoopKp

Type: Short

Description: Position loop proportional gain value.

Units: None

Default: 0

PosLoopKvff

Type: Short

Description: Position loop velocity feed forward value.

Units: None

Default: 0

PosLoopKaff

Type: Short

Description: Position loop acceleration feed forward value.

Units: None

Default: 0

PosLoopScale

Type: Short

Description: The output of the position loop is multiplied by this value before being passed to

the velocity loop. This scaling factor is calculated such that a value of 100 is a

1.0 scaling factor. This parameter is most useful in dual loop systems.

Units: None

Default: 100

CMO Programmer’s Guide Linkage

 39 Copley Controls

5.10 Tracking Windows

Properties

TrackingWindows

Type: TrackingWindowsObj

Description: This property contains the TrackingWindows object.

Units: None

Default: None

TrackingWindowsObj

Properties

PositionWarnWindow

Type: Double

Description: Position warning window. If the absolute value of the position error exceeds this

value, then a tracking warning will result. A tracking warning causes a bit in the

amplifier’s status to be set.

Units: User-defined units

Default: 0.0

SettlingWindow

Type: Double

Description: Position settling window. An amplifier is settled in position after a move when its

absolute position error value has been within the settling window for a time

greater than the settling time.

Units: User-defined units

Default: 0.0

SettlingTime

Type: Short

Description: Position settling time value. An amplifier is settled in position after a move when

its absolute position error value has been within the settling window for a time

greater than the settling time value.

Units: mS

Default: 0

VelocityWarnWindow

Type: Double

Description: Velocity warning window. If the absolute value of the velocity error exceeds this

value, then a velocity warning results. A velocity warning causes a bit in the

amplifier’s status to be set.

Units: User-defined units

Default: 0.0

VelocityWarnTime

Type: Short

Description: Velocity warning window time value. If velocity error exceeds velocity warning

window, a bit is set in the amplifier status word. Bit is not cleared until velocity

error stays within warning window for at least this long.

Units: mS

Default: 0

CMO Programmer’s Guide Linkage

 40 Copley Controls

5.11 Homing

Methods

GoHome ()

Description: Executes a homing move using the values set in the HomeSettings object.

Parameters: None

Properties

IsReferenced

Type: Boolean

Description: Read-only. Returns True if successfully referenced (homed).

Units: None

Default: False

SoftPositionPosLimit

Type: Double

Description: Positive limit position. Any time the motors actual position is greater than this

value, a positive software limit condition will be in effect on the amplifier.

Software limits are enabled after the amplifier is referenced and disabled by

setting the positive limit equal to the negative limit.

Units: None

Default: 0

SoftPositionNegLimit

Type: Double

Description: Negative limit position. Any time the motors actual position is less then this

value, a negative software limit condition will be in effect on the amplifier.

Software limits are enabled after the amplifier is referenced and disabled by

setting the positive limit equal to the negative limit.

Units: None

Default: 0

HomeSettingsObj

Type: HomeSettingsObj

Description: Contains the HomeSettingsObj.

Units: None

Default: None

HomeSettingsObj

Properties

HomeOffset

Type: Double

Description: The home offset value. After the home position is found as defined by the home

method, this offset will be added to it and the resulting position will be

considered the zero position.

Units: User-defined units

Default: 0.0

CMO Programmer’s Guide Linkage

 41 Copley Controls

HomeVelFast

Type: Double

Description: Velocity to use for fast moves during the home procedure.

Units: User-defined units/second

Default: 0.0

HomeVelSlow

Type: Double

Description: Velocity to use when seeking a sensor edge.

Units: User-defined units/second

Default: 0.0

HomeAccel

Type: Double

Description: Acceleration/deceleration value used for all homing procedure moves.

Units: User-defined units/second2

Default: 0.0

HomeCurrentLimit

Type: Short

Description: Home current limit in hard stop mode, in which the amplifier drives the motor to

the mechanical end of travel (hard stop). End of travel is recognized when the

amplifier outputs the HomeCurrent for the HomeDelay time.

Units: 0.01A

Default: 0

HomeDelay

Type: Short

Description: Delay used for homing to a hard stop in hard stop mode.

Units: mS

Default: 0

HomeMethod

Type: CML_HOME_METHOD

Description: The method used for homing the amplifier.

Units: None

Default: CHOME _NONE

CML_HOME_METHOD

CHOME_NEGATIVE_LIMIT_OUTTO_INDEX = 1

Move into the negative limit switch, then back to the first encoder index pulse beyond

it. Index position is home.

CHOME_POSITIVE_LIMIT_OUTTO_INDEX = 2

Move into the positive limit switch, then back to the first encoder index pulse beyond it.

Index position is home.

CHOME_POSITIVE_HOME_OUTTO_INDEX = 3

Move to a positive home switch, then back to the first encoder index outside the home

region. Index position is home.

CHOME_POSITIVE_HOME_INTO_INDEX = 4

Move to a positive home switch and continue to the first encoder index inside the home

region. Index position is home.

CHOME_NEGATIVE _HOME_OUTTO_INDEX = 5

Move to a negative home switch, then back to the first encoder index outside the home

region. Index position is home.

CMO Programmer’s Guide Linkage

 42 Copley Controls

CHOME_NEGATIVE _HOME_INTO_INDEX = 6

Move to a negative home switch and continue to the first encoder index inside the

home region. Index position is home.

CHOME_LOWER_HOME_OUTSIDE_INDEX_POSITIVE = 7

Move to the lower side of a momentary home switch. Then find the first encoder index

pulse outside the home region. If the home switch is not active when the home

sequence starts, then the initial move will be positive.

CHOME_LOWER_HOME_INSIDE_INDEX_POSITIVE = 8

Move to the lower side of a momentary home switch. Then find the first encoder index

pulse inside the home region. If the home switch is not active when the home sequence

starts, then the initial move will be positive.

CHOME_UPPER_HOME_INSIDE_INDEX_POSITIVE = 9

Move to the upper side of a momentary home switch. Then find the first encoder index

pulse inside the home region. If the home switch is not active when the home sequence

starts, then the initial move will be positive.

CHOME_UPPER_HOME_OUTSIDE_INDEX_POSITIVE = 10

Move to the upper side of a momentary home switch. Then find the first encoder index

pulse outside the home region. If the home switch is not active when the home

sequence starts, then the initial move will be positive.

CHOME_UPPER_HOME_OUTSIDE_INDEX_NEGATIVE = 11

Move to the upper side of a momentary home switch. Then find the first encoder index

pulse outside the home region. If the home switch is not active when the home

sequence starts, then the initial move will be negative.

CHOME_UPPER_HOME_INSIDE_INDEX_NEGATIVE = 12

Move to the upper side of a momentary home switch. Then find the first encoder index

pulse inside the home region. If the home switch is not active when the home sequence

starts, then the initial move will be negative.

CHOME_LOWER_HOME_INSIDE_INDEX_NEGATIVE = 13

Move to the lower side of a momentary home switch. Then find the first encoder index

pulse inside the home region. If the home switch is not active when the home sequence

starts, then the initial move will be negative.

CHOME_LOWER_HOME_OUTSIDE_INDEX_NEGATIVE = 14

Move to the lower side of a momentary home switch. Then find the first encoder index

pulse outside the home region. If the home switch is not active when the home

sequence starts, then the initial move will be negative.

CHOME_POSITIVE_LIMIT = 18

Move into the positive limit switch. The edge of the limit is home.

CHOME _ POSITIVE_HOME = 19

Move to a positive home switch. The edge of the home region is home.

CHOME_ NEGATIVE_HOME = 21

Move to a negative home switch. The edge of the home region is home.

CMO Programmer’s Guide Linkage

 43 Copley Controls

CHOME _LOWER_HOME_POSITIVE = 23

Move to the lower side of a momentary home switch. The edge of the home region is

home. If the home switch is not active when the home sequence starts, then the initial

move will be positive.

CHOME _UPPER_HOME_POSITIVE = 25

Move to the upper side of a momentary home switch. The edge of the home region is

home. If the home switch is not active when the home sequence starts, then the initial

move will be positive.

CHOME _UPPER_HOME_ NEGATIVE = 27

Move to the upper side of a momentary home switch. The edge of the home region is

home. If the home switch is not active when the home sequence starts, then the initial

move will be negative.

CHOME _LOWER_HOME_ NEGATIVE = 29

Move to the lower side of a momentary home switch. The edge of the home region is

home. If the home switch is not active when the home sequence starts, then the initial

move will be negative.

CHOME _INDEX_ NEGATIVE = 33

Move in the negative direction until the first encoder index pulse is found. The index

position is home.

CHOME _INDEX_POSITIVE = 34

Move in the positive direction until the first encoder index pulse is found. The index

position is home.

CHOME _NONE = 35

Set the current position to home.

CHOME_HARDSTOP_OUTSIDE_INDEX_NEG = 252

Home to a hard stop. Move in the negative direction until the homing current has been

reached. This current will be held until the homing delay has expired. Then move away

from the hard stop until an index mark is located. The index position is home.

CHOME_HARDSTOP_OUTSIDE_INDEX_POS = 253

Home to a hard stop. Move in the positive direction until the homing current has been

reached. This current will be held until the homing delay has expired. Then move away

from the hard stop until an index mark is located. The index position is home.

CHOME_HARDSTOP_NEG = 254

Home to a hard stop. The motor will start running in the negative direction until the

homing current has been reached. It will hold this current until the homing delay has

expired. The actual position after that delay is home.

CHOME_HARDSTOP_POS = 255

Home to a hard stop. The motor will start running in the positive direction until the

homing current has been reached. It will hold this current until the homing delay has

expired. The actual position after that delay is home.

CMO Programmer’s Guide Linkage

 44 Copley Controls

5.12 Quick Stop

Methods

QuickStop ()

Description: Performs a quick stop on axis using the programmed Quick Stop Mode.

Parameters: None

Properties

QuickStopMode

Type: CML_QUICK_STOP_MODE

Description: Defines how the motor motion is stopped when the QuickStop() command is

issued.

Units: None

Default: None

CML_QUICK_STOP_MODE

QSTOP_DISABLE = 0

 Disable the amplifier immediately

QSTOP_DECEL = 1

 Slow down using the ProfileDecel property of the ProfileSettingsObj, then disable.

QSTOP_QUICKSTOP = 2

 Slow down using the QuickStopDec property then disable.

QSTOP_ABRUPT = 3

 Slow down with unlimited deceleration then disable

QSTOP_DECEL_HOLD = 5

Slow down using the ProfileDecel property of the ProfileSettingsObj, and then hold. Amplifier

must be disabled and re-enabled before motion is allowed again.

QSTOP_QUICKSTOP_HOLD = 6

Slow down using the QuickStopDec property then hold. Amplifier must be disabled and re-

enabled before motion is allowed.

QSTOP_ABRUPT_HOLD = 7

Slow down with unlimited deceleration then hold. Amplifier must be disabled and re-enabled

before motion is allowed.

CMO Programmer’s Guide Linkage

 45 Copley Controls

5.13 Halt

Methods

HaltMove ()

Description: Halts current move using the halt mode programmed in the amplifier.

Parameters: None

Properties

HaltMode

Type: CML_HALT_MODE

Description: Defines how the motor motion is stopped when the HaltMove() command is

issued.

Units: None

Default: None

CML_HALT_MODE

HALT_DISABLE = 0

Disable the amplifier immediately

HALT_DECEL = 1

Slow down using the ProfileDecel property (see ProfileSettingsObj).

HALT_QUICKSTOP = 2

Slow down using the QuickStopDec property.

HALT_ABRUPT = 3

Slow down with unlimited deceleration

5.14 Point-to-Point Moves

Methods

MoveRel (distance As Double)

Description: Performs a relative point-to-point move of the specified distance.

Parameters:

distance Trajectory distance Units: User-defined

units

MoveAbs (position As Double)

Description: Performs an absolute point-to-point move to the specified position.

Parameters:

position Trajectory target position Units: User-defined

units

WaitMoveDone (timeout As Long)

Description: Waits for current move to finish. This method is blocking. When called, it will not

return until either the event occurs, the timeout expires, a fault occurs, or a

move is aborted. If a timeout occurs, CMO will report the timeout by throwing an

exception.

CMO Programmer’s Guide Linkage

 46 Copley Controls

Parameters:

timeout The timeout for the wait. If < 0, then wait

indefinitely

Units: mS

Properties

TargetPos

Type: Double

Description: Read-only. Reads the profile target position.

Units: User-defined units

Default:

TrajectoryAcc

Type: Double

Description: Read-only. Gets the instantaneous commanded acceleration passed out of the

trajectory generator. This acceleration is used by the position loop to calculate

its acceleration feed forward term.

Units: User-defined units/second2

Default:

TrajectoryVel

Type: Double

Description: Read-only. Gets the instantaneous commanded velocity passed out of the

trajectory generator. This velocity is used by the position loop to calculate its

velocity feed forward term.

Units: User-defined units/second

Default:

ProfileSettingsObj

Type: ProfileSettingsObj

Description: Contains the ProfileSettings object.

Units: None

Default: None

ProfileSettingsObj

Properties

ProfileType

Type: CML_PROFILE_TYPE

Description: Motion profile type.

Units: None

Default: PROFILE_TRAP

CML_PROFILE_TYPE

PROFILE_VELOCITY = -1

 Velocity profile mode. In this profile mode the velocity, acceleration and

deceleration values are used. The position value is also used, but it only defines

the direction of motion (positive if position is >= 0, negative if position is < 0).

PROFILE_TRAP = 0

 Trapezoidal profile mode.

CMO Programmer’s Guide Linkage

 47 Copley Controls

PROFILE_SCURVE = 3

 S-curve profile mode (Jerk limited).

ProfileAcc

Type: Double

Description: The profile acceleration value that the motor uses when starting the move.

Units: User-defined units/second2

Default: 0

ProfileDecel

Type: Double

Description: The profile deceleration value that the motor uses when ending the move. This

property is not used for S-curve profiles.

Units: User-defined units/second2

Default: 0

ProfileJerk

Type: Double

Description: The jerk limit used with S-curve profiles. Jerk is rate of change of acceleration.

Only used with S-curve profiles.

Units: User-defined units/second3

Default: 0

ProfileVel

Type: Double

Description: The profile velocity value that the motor attempts to reach during the move.

Units: User-defined units/second

Default: 0

Profile Abort

Type: Double

Description: Deceleration value to use when aborting a running trajectory.

Units: User-defined units/second2

Default: 0

5.15 Save/Restore Amplifier Data

Methods

SaveRamToFlash ()

Description: Saves parameters stored in the amplifiers volatile RAM memory to non-volatile

flash memory.

Parameters:

None

LoadDriveConfig (name As String, canObj As CANopenObj)

Description: Loads specified drive configuration file. Presently supports loading *.ccd files

created by CME V7.1 and later.

NOTE: This method loads the file into the amplifier’s Flash. To move the data to

the amplifier’s RAM, reset the drive.

Parameters:

name Name (and optionally path) of the file to load Units: None

line An instance of a CANopenObj that has already been

initialized

Units: None

CMO Programmer’s Guide Linkage

 48 Copley Controls

5.16 Node Guarding

Methods

StartGuarding (guardTime As Short, lifeFactor As Short)

Description: Starts node guarding with the specified guard time and life factor.

Parameters:

guardTime Node guarding time Units: mS

lifeFactor Life Factor Units: None

StopGuarding ()

Description: Disables node guarding & heartbeat monitoring.

Parameters: None

ClearNodeGuardEvent ()

Description: Attempts to clear a node guarding event condition.

Parameters: None

5.17 Status, Events, and Faults

Methods

ReadEventStatus (eventStatus As CML_EVENT_STATUS)

Description: Read amplifier's event status register. This is the main internal register, used to

describe the amplifier’s current state.

Parameters:

eventStatus The value of the event status is returned here Units: None

ReadEventSticky (eventSticky As CML_EVENT_STATUS)

Description:Reads the amplifier's 'sticky' event status register, which is a copy of the

amplifier’s event status register. The bits of this register are set normally, but only

cleared when the register is read (i.e., the bits are 'sticky').

Parameters:

eventSticky The value of the event status is returned here Units: None

ReadEventLatch (eventLatch As CML_EVENT_STATUS)

Description: Reads the latched version of the amplifier’s event status register, which is a copy

of the amplifier’s event status register. The bits of this register are set normally,

but only cleared in response to an amplifier reset or power cycle or by calling

ClearFaults (i.e., the bits are latched).

Parameters:

eventLatch The value of the event status is returned here Units: None

CML_EVENT_STATUS

Value Bit Description

EVENT_STATUS_SHORT_CIRCUIT 0 Amplifier short circuit.

EVENT_STATUS_AMPLIFIER_TEMPERATURE 1 Amplifier over temperature.

EVENT_STATUS_OVER_VOLTAGE 2 Amplifier over voltage.

EVENT_STATUS_UNDER_VOLTAGE 3 Amplifier under voltage.

CMO Programmer’s Guide Linkage

 49 Copley Controls

EVENT_STATUS_MOTOR_TEMPERATURE 4 Motor over temperature.

EVENT_STATUS_ENCODER_ERROR 5 Encoder error.

EVENT_STATUS_PHASE_ERROR 6 Phasing error.

EVENT_STATUS_CURRENT_LIMIT 7 Current limited.

EVENT_STATUS_VOLTAGE_LIMIT 8 Voltage limited.

EVENT_STATUS_POSITIVE_LIMIT 9 Positive limit is active.

EVENT_STATUS_NEGATIVE_LIMIT 10 Negative limit is active.

EVENT_STATUS_DISABLE_INPUT 11 Hardware disabled (enable pin not set).

EVENT_STATUS_SOFTWARE_DISABLE 12 Disabled due to software request.

EVENT_STATUS_STOP 13 Try to stop motor (after disable, before

brake).

EVENT_STATUS_BRAKE 14 Brake actuated.

EVENT_STATUS_PWM_DISABLE 15 PWM outputs disabled.

EVENT_STATUS_SOFTWARE_LIMIT_POSITIVE 16 Positive software limit reached.

EVENT_STATUS_SOFTWARE_LIMIT_NEGATIVE 17 Negative software limit reached.

EVENT_STATUS_TRACKING_ERROR 18 Tracking error.

EVENT_STATUS_TRACKING_WARNING 19 Tracking warning.

EVENT_STATUS_RESET 20 Amplifier has been reset.

EVENT_STATUS_POSITON_WRAP 21 Encoder position wrapped (rotary) or hit
limit (linear).

EVENT_STATUS_FAULT 22 Latching fault in effect.

EVENT_STATUS_VELOCITY_LIMIT 23 Velocity is at limit.

EVENT_STATUS_ACCELERATION_LIMIT 24 Acceleration is at limit.

EVENT_STATUS_TRACKING_WINDOW 25 Not in tracking window if set.

EVENT_STATUS_HOME 26 Home switch is active.

EVENT_STATUS_MOVING 27 Trajectory generator active OR not yet
settled.

EVENT_STATUS_VELOCITY_WIN 28 Velocity error outside of velocity window
when set.

EVENT_STATUS_PHASE_INIT 29 Set when using algorithmic phase
initialize mode and the phase is not
initialized.

EVENT_STATUS_CMD_INPUT_LOST 30 Command input lost

 31 Undefined

ReadEventMask (eventMask As CML_AMP_EVENT)

Description: Reads the current state of the amplifier’s event register. The event mask is a bit-

mapped variable that describes the state of the amplifier. The contents of this

variable are built up from several different amplifier status words.

Parameters:

eventMask The value of the amp event mask is returned here Units: None

CMO Programmer’s Guide Linkage

 50 Copley Controls

CML_AMP_EVENT

Value Bit Description

AMPEVENT_MOVE_DONE 0 Set when a move is finished and the amplifier has

settled in to position at the end of the move. Cleared
when a new move is started.

AMPEVENT_TRAJECTORY_DONE 1 Set when the trajectory generator finishes a move.

The motor may not have settled into position at this
point. Cleared when a new move is started.

AMPEVENT_NODEGUARD 2 A node guarding (or heartbeat) error has occurred.

AMPEVENT_START_ACKNOWLEDGE 3 The Amplifier Object uses this event bit internally. It
is set when the amplifier acknowledges a new move

start.

AMPEVENT_FAULT 4 A latching amplifier fault has occurred. The specifics
of what caused the fault can be obtained by calling
ReadFaults and the fault conditions cleared by

calling ClearFaults

AMPEVENT_ERROR 5 A non-latching amplifier error has occurred.

AMPEVENT_POSITION_WARNING 6 The amplifier's absolute position error is greater
than the window set with PositionWarnWindow.

AMPEVENT_POSITION_WINDOW 7 The amplifier's absolute position error is greater

than the window set with SettlingWindow

AMPEVENT_VELOCITY_WINDOW 8 The amplifier's absolute velocity error is greater than

the window set with VelocityWarnWindow

AMPEVENT_DISABLED 9 The amplifier's outputs are disabled. The reason for
the disable can be determined by calling

ReadEventStatus,

AMPEVENT_POSITIVE_LIMIT 10 The positive limit switch is active.

AMPEVENT_NEGATIVE_LIMIT 11 The negative limit switch is active.

AMPEVENT_SOFTWARE_LIMIT_POSITI

VE

12 The positive software limit is active.

AMPEVENT_SOFTWARE_LIMIT_NEGA
TIVE

13 The negative software limit is active.

AMPEVENT_QUICKSTOP 14 The amplifier is presently performing a quick stop

sequence.

AMPEVENT_ABORT 15 The last profile was aborted without finishing

AMPEVENT_SOFTDISABLE 16 The amplifier is software disabled.

AMPEVENT_HOME_CAPTURE 17 A new home position has been captured.

AMPEVENT_PVT_EMPTY 18 The PVT buffer is empty.

AMPEVENT_PHASE_INIT 19 Amplifier is currently performing a phase

initialization.

 20-
30

Undefined

AMPEVENT_NOT_INITIALIZED 31 This amplifier's event mask has not yet been

initialized (internal use only).

ReadFaults (faults As CML_AMP_FAULT)

Description: Reads the current state of the amplifier fault latch register.

Parameters:

CMO Programmer’s Guide Linkage

 51 Copley Controls

faults The value of the amp fault latch is returned here Units: None

ClearFaults ()

Description: Clears amplifier faults. This function can be used to clear any latching faults on

the amplifier

Parameters: None

Properties

FaultMask

Type: CML_AMP_FAULT

Description: Amplifier’s fault mask. Fault mask identifies which conditions will be treated as

latching faults by the amplifier

Units: None

Default: None

CML_AMP_FAULT

Value Bit Description

FAULT_DATAFLASH = 1 0 Fatal hardware error: the flash data is corrupt.

FAULT_ADCOFFSET = 2 1 Fatal hardware error: an A/D offset error has
occurred.

FAULT_SHORT_CIRCUIT = 4 2 The amplifier detected a short circuit condition.

FAULT_AMP_TEMPERATURE = 8 3 The amplifier is over temperature.

FAULT_MOTOR_TEMPERATURE = 16 4 A motor temperature error was detected.

FAULT_OVER_VOLTAGE = 32 5 The amplifier bus voltage is over the acceptable

limit.

FAULT_UNDER_VOLTAGE = 64 6 The amplifier bus voltage is below the

acceptable limit.

FAULT_ENCODER_ERROR = 128 7 Encoder error.

FAULT_PHASE_ERROR = 256 8 Amplifier phasing error.

FAULT_TRACKING_ERROR = 512 9 Tracking error, the position error is too large.

FAULT_I2T_LIMIT_ERROR = 1024 10 Current is limited by the I2T algorithm.

5.18 Digital Inputs/Outputs

Input Methods

ReadInputDebouce (input As Integer, time As Long)

Description: Reads the debounce time for the specified input. This time specifies how long an

input must remain stable at a new state before the amplifier recognizes the state.

Parameters:

input The input to configure. Inputs are numbered starting

from 0. Check amplifier data sheet for the number of

inputs available

Units: None

time The debounce time assigned to this input Units: mS

CMO Programmer’s Guide Linkage

 52 Copley Controls

WriteInputDebounce (input As Integer, time As Long)

Description: Writes the debounce time for the specified input. This time specifies how long an

input must remain stable at a new state before the amplifier recognizes the state.

Parameters:

input The input to configure. Inputs are numbered starting

from 0. Check amplifier datasheet for the number of

inputs available

Units: None

time The debounce time assigned to this input. Units: mS

ReadInputConfig (input As Integer, config As CML_INPUT_PIN_CONFIG)

Description: Gets the input configuration for the specified input. Each of the amplifier’s inputs

can be configured to perform some function.

Parameters:

input Input to read. Inputs are numbered starting from 0.

Check amplifier datasheet for number of inputs

available

Units:

None

config Function assigned to the input Units:

None

ReadInputConfigMultiAxis (input As Integer, config As CML_INPUT_PIN_CONFIG,

axis as Short)

Description: Gets the configuration and associated axis number for the specified input.

Parameters:

input Input to read. Inputs are numbered starting from 0.

Check amplifier datasheet for number of inputs

available

Units:

None

config Function assigned to the input Units:

None

axis The axis number this input is associated with (A=0,

B=1, etc.)

Units:

None

WriteInputConfig (input As Integer, config As CML_INPUT_PIN_CONFIG)

Description: Sets the input configuration for the specified input. Each of the amplifier’s inputs

can be configured to perform some function. WriteInputConfig configures the

specified input to perform the specified function.

Parameters:

input Input to read. Inputs are numbered starting from 0.

Check amplifier datasheet for number of inputs

available

Units:

None

config Function assigned to the input Units:

None

WriteInputConfigMultiAxis (input As Integer, config As CML_INPUT_PIN_CONFIG,

axis as Short)

Description:

Sets the input configuration for the specified input.

Parameters:

input Input to read. Inputs are numbered starting from 0.

Check amplifier datasheet for number of inputs

available

Units:

None

CMO Programmer’s Guide Linkage

 53 Copley Controls

config Function assigned to the input Units:

None

axis The axis number this input is associated with (A=0,

B=1, etc.)

Units:

None

CML_INPUT_PIN_CONFIG

INPUT_CONFIGURATION_NONE = 0

No function assigned to the input.

INPUT_CONFIGURATION_RESET_RISING = 2

Reset the amplifier on the rising edge of the input.

INPUT_CONFIGURATION_RESET_FALLING = 3

Reset the amplifier on the falling edge of the input.

INPUT_CONFIGURATION_POSITIVE_LIMIT_HIGH = 4

Positive limit switch; active high

INPUT_CONFIGURATION_POSITIVE_LIMIT_LOW = 5

Positive limit switch; active low

INPUT_CONFIGURATION_NEGATIVE_LIMIT_HIGH = 6

Negative limit switch, active high

INPUT_CONFIGURATION_NEGATIVE_LIMIT_LOW = 7

Negative limit switch, active low.

INPUT_CONFIGURATION_MOTOR_TEMPERATURE_HIGH = 8

Motor temperature sensor; active high

INPUT_CONFIGURATION_MOTOR_TEMPERATURE_LOW = 9

Motor temperature sensor, active low

INPUT_CONFIGURATION_CLEAR_FAULTS_HIGH = 10

Clear faults on the rising edge; disable while high

INPUT_CONFIGURATION_CLEAR_FAULTS_LOW = 11

Clear faults on the falling edge, disable while low

INPUT_CONFIGURATION_RESET_DISABLE_RISING = 12

Reset on rising edge; disable while high.

INPUT_CONFIGURATION_RESET_DISABLE_FALLING = 13

Reset on falling edge; disable while low.

INPUT_CONFIGURATION_HOME_HIGH = 14

Home switch; active high.

INPUT_CONFIGURATION_HOME_LOW = 15

Home switch; active low

INPUT_CONFIGURATION_DISABLE_HIGH = 16

Amplifier disable; active high

CMO Programmer’s Guide Linkage

 54 Copley Controls

INPUT_CONFIGURATION_DISABLE_LOW = 17

Amplifier disable; active low.

INPUT_CONFIGURATION_PWM_SYNCH = 19

PWM synchronization. Only for high speed inputs (see data sheet).

INPUT_CONFIGURATION_MOTION_ABORT_HIGH = 20

Abort move in progress; keep the amplifier enabled and servoing; active high

INPUT_CONFIGURATION_MOTION_ABORT_LOW = 21

Abort move in progress; keep the amplifier enabled and servoing; active low

INPUT_CONFIGURATION_HIGH_RES_ANALOG_DIVIDE_HIGH = 22

A high input causes the firmware to divide the level of the analog input signal by 8

INPUT_CONFIGURATION_HIGH_RES_ANALOG_DIVIDE_LOW = 23

A low input causes the firmware to divide the level of the analog input signal by 8

INPUT_CONFIGURATION_HIGHSPEED_CAPTURE_RISING = 24

High speed position capture on rising edge

INPUT_CONFIGURATION_HIGHSPEED_CAPTURE_FALLING = 25

High speed position capture on falling edge

INPUT_CONFIGURATION_COUNT_EDGES_RISING = 26

Count rising edges of input, store the results to an indexer register

INPUT_CONFIGURATION_COUNT_EDGES_FALLING = 27

Count falling edges of input, store the results to an indexer register

INPUT_CONFIGURATION_ABORT_WINDOW_RISING = 36

Abort move on rising edge if not within N counts of destination position

INPUT_CONFIGURATION_ABORT_WINDOW_FALLING = 37

Abort move on falling edge if not within N counts of destination position

INPUT_CONFIGURATION_HV_LOSS_DISABLE_HIGH = 38

Mark HV loss on rising edge, disable while high.

INPUT_CONFIGURATION_HV_LOSS_DISABLE_LOW = 39

Mark HV loss on falling edge, disable while low.

INPUT_CONFIGURATION_TRJ_UPDATE_RISING = 40

Trajectory update on rising edge.

INPUT_CONFIGURATION_TRJ_UPDATE_FALLING = 41

Trajectory update on falling edge.

INPUT_CONFIGURATION_CLR_FAULTS_EVENTS_RISING = 42

Clear faults and event latch on rising edge.

INPUT_CONFIGURATION_CLR_FAULTS_EVENTS_FALLING = 43

Clear faults and event latch on falling edge.

CMO Programmer’s Guide Linkage

 55 Copley Controls

INPUT_CONFIGURATION_DIS_SIM_ENC_L_BURST_RISING = 44

Disable simulated encoder output when low. Burst current position on encoder output

on rising edge.

INPUT_CONFIGURATION_DIS_SIM_ENC_H_BURST_FALLING = 45

Disable simulated encoder output when high. Burst current position on encoder output

on falling edge.

Input Properties

Inputs

Type: Integer

Description: Read-only. Gets the present hi/low states of the programmable inputs after

debounce. The inputs are returned one per bit. The value of IN1 is returned in

bit 0 (1 if high, 0 if low), IN2 in bit 1, etc.

Units: None

Default: None

Inputs32

Type: Integer

Description: Read-only. This is the 32-bit version of the Inputs property above.

Units: None

Default: None

IoPullup

Type: Integer

Description: State of the pull up/down resistors. Some Copley Controls amplifiers (see

amplifier data sheet) have pull up/down resistors connected to a group of

inputs. Each bit in the IoPullup property represents one pull up/down resistor;

pull up/down resistor 1 is returned in bit 0, pull up/down resistor 2 is return in

bit 2, etc. When the bit is set, the inputs connected to the resistor are pulled up

to the high state when they are not connected. When the bit is cleared, the

inputs are pulled down to a low state when they are not connected

Units: None

Default: None

IoPullup32

Type: Integer

Description: This is the 32-bit version of the IoPullup property above.

Units: None

Default: None

Output Methods

ReadOutputConfig (output As Short, config As CML_OUTPUT_PIN_CONFIG, mask

As Integer)

Description: Reads the configuration for the specified output.

Parameters:

output Input to read. Inputs are numbered starting from 0.

Check amplifier datasheet for number of inputs

available

Units:

None

CMO Programmer’s Guide Linkage

 56 Copley Controls

config Function assigned to the input Units:

None

mask A 32-bit mask used to select which status bits the

output should track. If the output is configured for

manual mode, then the mask is not used.

Units:

None

ReadOutputConfigMultiAxis (output As Short, config As

CML_OUTPUT_PIN_CONFIG, mask As Integer, axis As short)

Description: Reads the configuration for the specified output.

Parameters:

output Input to read. Inputs are numbered starting from 0.

Check amplifier datasheet for number of inputs

available

Units: None

config Function assigned to the input Units: None

mask A 32-bit mask used to select which status bits the

output should track. If the output is configured for

manual mode, then the mask is not used.

Units: None

axis The axis number this output is associated with (A=0,

B=1, etc.)

Units: None

ReadOutputConfigExt (output As Short, config As CML_OUTPUT_PIN_CONFIG,

param1 As Integer, param2 As Integer)

Description: Reads the configuration for the specified output.

Parameters:

output Input to read. Inputs are numbered starting from 0.

Check amplifier datasheet for number of inputs

available

Units: None

config Function assigned to the input Units: None

param1 The first 32-bit parameter that defines an output

function (used for functions requiring 5 words of data).

Units: None

param2 The second 32-bit parameter that defines an output

function (used for functions requiring 5 words of data).

Units: None

ReadOutputConfigExtMultiAxis (output As Short, config As

CML_OUTPUT_PIN_CONFIG, param1 As Integer, param2 As Integer, axis As

Short)

Description: Reads the configuration for the specified output.

Parameters:

output Input to read. Inputs are numbered starting from 0.

Check amplifier datasheet for number of inputs

available

Units: None

config Function assigned to the input Units: None

param1 The first 32-bit parameter that defines an output

function (used for functions requiring 5 words of data).

Units: None

param2 The second 32-bit parameter that defines an output

function (used for functions requiring 5 words of data).

Units: None

axis The axis number this output is associated with (A=0,

B=1, etc.)

Units: None

CMO Programmer’s Guide Linkage

 57 Copley Controls

WriteOutputConfig (output As Short, config As CML_OUTPUT_PIN_CONFIG, mask

As Integer)

Description: Sets the configuration for the specified output. Each of the amplifier’s outputs can

be configured to event status tracking mode or manual mode, as specified by the

config parameter.

Parameters:

output The output to configure. Outputs are numbered starting

from 0. Check amplifier datasheet for the number of

outputs available

Units: None

config The function to be assigned to this output. Units: None

mask A 32-bit mask used to select which status bits the output

should track. If the output is configured for manual mode,

then the mask is not used.

Units: None

WriteOutputConfigMultiAxis (output As Short, config As CML_OUTPUT_PIN_CONFIG,

mask As Integer, axis As Short)

Description: Sets the configuration for the specified output. Each of the amplifier’s outputs can

be configured to event status tracking mode or manual mode, as specified by the

config parameter.

Parameters:

output The output to configure. Outputs are numbered

starting from 0. Check amplifier datasheet for the

number of outputs available

Units: None

config The function to be assigned to this output. Units: None

mask A 32-bit mask used to select which status bits the

output should track. If the output is configured for

manual mode, then the mask is not used.

Units: None

axis The axis number this output is associated with (A=0,

B=1, etc.)

Units: None

WriteOutputConfigExtMultiAxis (output As Short, config As

CML_OUTPUT_PIN_CONFIG, param1 As Integer, param2 As Integer, axis As

Short)

Description: Sets the configuration for the specified output. Each of the amplifier’s outputs can

be configured to event status tracking mode, position triggered mode, or manual

mode, as specified by the config parameter

Parameters:

output The output to configure. Outputs are numbered

starting from 0. Check amplifier datasheet for the

number of outputs available

Units: None

config The function to be assigned to this output Units: None

param1 The first 32-bit parameter that defines an output

function (used for functions requiring 5 words of

data).

Units: None

param2 The second 32-bit parameter that defines an output

function (used for functions requiring 5 words of

data).

Units: None

axis The axis number this output is associated with (A=0,

B=1, etc.)

Units: None

CML_OUTPUT_PIN_CONFIG

OUTPUT_CONFIGURATION_EVENT_STATUS_LOW = 0

CMO Programmer’s Guide Linkage

 58 Copley Controls

The output follows the amplifier's event status register and is active low.
param1 A 32-bit mask used to select which status bits the output should track.

param2 Has no meaning. Set to zero.

OUTPUT_CONFIGURATION_ EVENT_STATUS_HIGH = 256

The output follows the amplifier's event status register and is active high
param1 A 32-bit mask used to select which status bits the output should track.

param2 Has no meaning. Set to zero.

OUTPUT_CONFIGURATION_EVENT_LATCH_LOW = 1

The output follows the latched version of the amplifier's event status register

and is active low
param1 A 32-bit mask used to select which status bits the output should track.

param2 Has no meaning. Set to zero.

OUTPUT_CONFIGURATION_EVENT_LATCH_HIGH = 257

The output follows the latched version of the amplifier's event status register

and is active high

param1 A 32-bit mask used to select which status bits the output should track.

param2 Has no meaning. Set to zero.

 OUTPUT_CONFIGURATION_MANUAL_LOW = 2

The output is manually controlled using Outputs property and is active low. This

method does not use parameters; set all parameters to zero.

OUTPUT_CONFIGURATION_MANUAL_HIGH = 258

The output is manually controlled using Outputs property and is active high. This

method does not use parameters; set all parameters to zero.

OUTPUT_CONFIGURATION_TRAJECTORY_STATUS_LOW = 3

The output pin follows bits in the amplifier’s trajectory status register and is

active low.

OUTPUT_CONFIGURATION_ TRAJECTORY_STATUS_HIGH = 259

The output pin follows bits in the amplifier’s trajectory status register and is

active high.
param1 A 32-bit mask used to select which status bits the output should track.

param2 Has no meaning. Set to zero.

OUTPUT_CONFIGURATION_POSITION_WINDOW_LOW = 4

The output goes active low if the actual motor position is greater than param1

and less than param2
param1 Low edge of position trigger window. Units: Counts.

param2 High edge of position trigger window. Units: Counts.

OUTPUT_CONFIGURATION_POSITION_WINDOW_HIGH = 260

The output goes active high if the actual motor position is greater than param1

and less than param2
param1 Low edge of position trigger window. Units: Counts.

CMO Programmer’s Guide Linkage

 59 Copley Controls

param2 High edge of position trigger window. Units: Counts.

OUTPUT_CONFIGURATION_MOTION_POSITIVE_LOW = 5

The output goes active low when the motor actual position crosses in the low-to-

high direction through the point specified in param1. The pin stays active for

amount of time specified in param2

param1 Trigger position. Units: Counts.

param2 Output active time. Units: milliseconds.

OUTPUT_CONFIGURATION_MOTION_POSITIVE_HIGH = 261

The output goes active high when the motor actual position crosses in the low-

to-high direction through the point specified in param1. The pin stays active for

amount of time specified in param2.
param1 Trigger position. Units: Counts.

param2 Output active time. Units: milliseconds.

OUTPUT_CONFIGURATION_MOTION_NEGATIVE_LOW = 6

The output goes active low when the motor actual position crosses in the high-

to-low direction through the point specified in param1. The pin stays active for

amount of time specified in param2.

param1 Trigger position. Units: Counts.

param2 Output active time. Units: milliseconds.

OUTPUT_CONFIGURATION_MOTION_NEGATIVE_HIGH = 262

The output goes active high when the motor actual position crosses in the high-

to-low direction through the point specified in param1. The pin stays active for

amount of time specified in param2
param1 Trigger position. Units: Counts.

param2 Output active time. Units: milliseconds.

OUTPUT_CONFIGURATION_TRIG_AT_POSITION_LOW = 7

The output goes active low when the motor actual position crosses in any

direction through the point specified in param1. The pin stays active for amount

of time specified in param2

param1 Trigger position. Units: Counts.

param2 Output active time. Units: milliseconds.

OUTPUT_CONFIGURATION_TRIG_AT_POSITION_HIGH = 263

The output goes active high when the motor actual position crosses in any

direction through the point specified in param1. The pin stays active for amount

of time specified in param2

param1 Trigger position. Units: Counts.

param2 Output active time. Units: milliseconds.

OUTPUT_CONFIGURATION_PWM_SYNCH = 512

PWM Synchronization. Note: Valid only on Output 0. This method does not use

parameters; set all parameters to zero

CMO Programmer’s Guide Linkage

 60 Copley Controls

Output Properties

Outputs

Type: Integer

Description: Reads or writes the present states (active/inactive) of the programmable

outputs. When this property is read, the current active/inactive state of all

outputs is returned. Each output is represented by one bit in the returned value;

bit 0 for output 1, bit 1 for output 2, etc. When this property is written, it is

used to control the active/inactive state of any outputs that are configured to

operate in manual mode. Writing a 1 to a bit causes the corresponding output to

become active; writing a 0 causes the output to become inactive. Bits

corresponding to outputs that are not configured in manual mode are ignored

Units: None

Default: None

5.19 Amplifier Events

Methods

CreateEvent (mask As CML_AMP_EVENT, condition As CML_EVENT_CONDITION)

As EventObj

Description: Creates an instance of EventObj, using specified parameters to monitor amplifier

events.

Parameters:

mask The bit-mapped value that indicates which events are

to be monitored

Units: None

condition The trigger condition for the events that will result in

the event callback method being called (e.g. all events

in the mask)

Units: None

CreateInputEvent (mask As Integer, condition As CML_EVENT_CONDITION) As

EventObj

Description: Reads the configuration for the specified output.

Parameters:

mask A bit-mapped value that indicates which digital input

pin is to be monitored. Each corresponds to one input

pin; bit 0 for input 0, bit 1 for input 1, etc

Units: None

condition The trigger condition for the events that will result in

the event callback method being called (e.g. all events

in the mask)

Units: None

CML_EVENT_CONDITION

CML_EVENT_ANY = 1

Any event occurring

CML_EVENT_ALL = 2

All the events are required

CML_EVENT_NONE = 3

None of the events

CMO Programmer’s Guide Linkage

 61 Copley Controls

5.20 Amplifier Trace
The trace system allows internal amplifier parameters to be sampled and stored at a specified

interval. The stored data may later be downloaded for analysis. The typical sequence of steps

involved to run the trace is as follows:

1 Set up the trace channels, sample period and trigger.

2 Start the trace.

3 Monitor the status until the trace has triggered and no longer running.

4 Read in the trace data.

The example, EX7_Trace, is provided with the installation of CMO. This example demonstrates

the steps necessary to run the trace and save the trace data to a file.

Methods

ReadTraceStatus (status As CML_AMP_TRACE_STATUS, samplesCollected As

Short, maxSamples As Short)

Description: Read the status of the amplifier's trace system as a bit mapped value. For most

tracing applications, only the first two bits are observed.

Bit Definition

0 Trace is running

1 Trace has triggered

2 Sampled mode

3 Trace will ignore initial delays

A typical sequence is as follows:

1 The trace is started; bit 0 will be set to indicate that the trace is running.

2 When the trigger condition is met, bit 1 will be set.

3 Once the trigger occurs, the trace will start collecting data.

4 The trace is done collecting data; bit 0 will be cleared and the trace data can

be read.

Parameters:

status Information on whether the trace is currently

running is returned in this parameter

Units:

None

samplesCollected The total number of trace samples collected is

returned here

maxSamples The maximum number of trace samples that will fit

in the internal buffer is returned here. This value

will change depending on how many trace channels

are active and which variables are selected.

CML_AMP_TRACE_STATUS

TRACE_STATUS_RUNNING = 1

Trace is currently collecting data.

TRACE_STATUS_TRIGGERED = 2

Trace has been triggered

TRACE_STATUS_SAMPLED = 4

Trace is currently in sampled mode

TRACE_STATUS_NODELAY = 8

Trace is configured to ignore initial delays

CMO Programmer’s Guide Linkage

 62 Copley Controls

ReadTraceRefPeriod (ref Period As Integer)

Description: Read-only. Read the fundamental period used with the amplifier’s trace. The

amplifier internally samples its trace channels at multiples of this time. For

example, if the amplifier's reference period is 62500 nanoseconds, then setting

the trace period to 10 would indicate that the amplifier should sample its internal

variables every 625 S.

Parameters:

refPeriod The reference period is returned here. Units: nS

WriteTracePeriod (tracePeriod As Short)

Description: Set the trace period. The rate at which samples are read by the trace is the

product of this value and the TraceRefPeriod.

Parameters:

tracePeriod The trace period to be set Units: multiple of

TraceRefPeriod

ReadTracePeriod (tracePeriod As Short)

Description: Set the trace period. The rate at which samples are read by the trace is the

product of this value and the TraceRefPeriod.

Parameters:

tracePeriod The trace period is returned here Units: multiple of TraceRefPeriod

WriteTraceTrigger (type As CML_AMP_TRACE_TRIGGER, channel As Short, level As

Integer, delay As Short)

Description: Configure the trace trigger. The trigger resembles the trigger on an oscilloscope.

It allows an event to be specified which will cause the trace to start collecting

data. Most trigger types watch one of the trace channels and constantly compare

its value to a level. The type of comparison made will depend on the type of

trigger. For example, the trace can be triggered on the rising edge of a signal, on

the falling edge, etc. The trigger also allows a delay value to be specified. The

delay specifies the number trace periods to wait after the trigger occurs to start

collecting samples. The delay can also be negative, in which case the delay

specifies the number of trace periods to collect data before the trigger occurs.

Parameters:

type The trigger type Units: None

channel The trace channel to watch. This

parameter defaults to 0 if not specified

Units: None

level The trigger level. This parameter defaults

to 0 if not specified

Units: Varies with

trigger type and the

trace channel variable

delay The delay between the occurrence of the

trigger and the start of data collection.

Units: trace periods

ReadTraceTrigger (type As CML_AMP_TRACE_TRIGGER, channel As Short, level As

Integer, delay As Short)

Description: Get the current configuration of the trace trigger.

Parameters:

type The type of trigger to be used Units: None

channel Which channel to trigger on Units: None

level The trigger level Units: Varies with trigger type and

the trace channel variable

CMO Programmer’s Guide Linkage

 63 Copley Controls

delay The delay between the

occurrence of the trigger and

the start of data collection.

Defaults to 0 if not specified

Units: trace periods

CML_AMP_TRACE_TRIGGER

TRACETRIG_NONE = 0

Trace trigger type none. The trace is triggered immediately on start

TRACETRIG_ABOVE = 256

Trigger as soon as the value on the selected variable is above the trigger level

TRACETRIG_BELOW = 512

Trigger as soon as the value on the selected variable is below the trigger level.

TRACETRIG_RISE = 768

Trigger when the value on the selected variable changes from below the trigger level to

above it.

TRACETRIG_FALL = 1024

Trigger when the value on the selected variable changes from above the trigger level to

below it

TRACETRIG_BITSET = 1280

Treat the trigger level as a bit mask which selects one or more bits on the selected

trace variable. The trigger occurs as soon as any of the selected bits are set.

TRACETRIG_BITCLR = 1536

Treat the trigger level as a bit mask which selects one or more bits on the selected

trace variable. The trigger occurs as soon as any of the selected bits are clear.

TRACETRIG_CHANGE = 1792

Trigger any time the selected trace variable value changes

TRACETRIG_EVENTSET = 2048

Treat the trigger level as a bit mask which selects one or more bits on the amplifier's

event status register. The trigger occurs as any of the selected bits are set

TRACETRIG_EVENTCLR = 2304

Treat the trigger level as a bit mask which selects one or more bits on the amplifier's

event status register. The trigger occurs as any of the selected bits are clear

TRACETRIG_FGEN_CYCLE = 2560

Trigger at the start of the next function generator cycle. This trigger type is only useful

when running in function generator mode

TRACETRIG_NODELAY = 16384

If this bit is set, then the trigger can occur even if the trace setup delay has not yet

occurred

TRACETRIG_SAMPLE = 32768

Only take a single sample for each trigger. Normally, the occurrence of the trigger

causes the trace to begin sampling data and stop when the trace buffer is full.

CMO Programmer’s Guide Linkage

 64 Copley Controls

ReadTraceMaxChannel (maxChannels As Short)

Description: Return the maximum number of trace channels supported by the amplifier.

Parameters:

maxChannels The number of channels is returned here Units: None

TraceStart ()

Description: Start collecting trace data on the amplifier. The trace will automatically stop once

the amplifier's internal trace buffer fills up.

Parameters: None

TraceStop ()

Description: Stop collecting trace data on the amplifier.

Parameters:

None

ReadTraceData (traceDataArray As Integer, dataCount As Integer)

Description: Upload any trace data captured in the amplifier. Trace data should only be

uploaded when the trace has both triggered and stopped. Uploading data during

data collection can cause corrupt data to be uploaded. The trace data is returned

as an array of 32-bit integer values. The data for all active channels is contained

within the trace data array. For example, if there are three active channels, then

the trace data array will be formatted as shown below:

Index 0 Index 1 Index 2 Index 3 Index 4 Index 5 Index 6 Index7 Index 8

Chan 1 Chan 2 Chan 3 Chan 1 Chan 2 Chan 3 Chan 1 Chan 2 Chan 3

Parameters:

traceDataArray An array where the trace data will be returned Units: None

dataCount On entry to this call, this parameter must hold the

maximum number of samples to upload. Upon

successful return, this parameter will contain the

total number samples returned.

Units: None

WriteTraceChannel (channel As Short, traceVar CML_AMP_TRACE_VAR)

Description: Set the trace variable associated with the specified channel.

Parameters:

channel The trace channel that the variable will be assigned to

(zero based).

Units: None

traceVar The trace variable to sample Units: None

WriteTraceChannel (channel As Short, traceVar CML_AMP_TRACE_VAR, axis As

Integer)

Description: Set the trace variable associated with the specified channel.

Parameters:

channel The trace channel that the variable will be assigned to

(zero based).

Units: None

traceVar The trace variable to sample Units: None

axis The axis number this channel is associated with (A=0,

B=1, etc.)

Units: None

CMO Programmer’s Guide Linkage

 65 Copley Controls

ReadTraceChannel (channel As Short, traceVar CML_AMP_TRACE_VAR)

Description: Read the trace variable associated with the specified channel.

Parameters:

channel The trace channel to get (zero based) Units: None

traceVar The trace variable assigned to this channel will be

returned here

Units: None

ReadTraceChannel (channel As Short, traceVar CML_AMP_TRACE_VAR, axis As

Integer)

Description: Read the trace variable associated with the specified channel.

Parameters:

channel The trace channel to get (zero based) Units: None

traceVar The trace variable assigned to this channel will be

returned here

Units: None

axis The axis number this channel is associated with (A=0,

B=1, etc.)

Units: None

CML_AMP_TRACE_VAR

TRACEVAR_CRNT_U = 3

Actual current, U winding. Units: 0.01 A.

TRACEVAR_CRNT_V = 4

Actual current, V winding. Units: 0.01 A

TRACEVAR_ANALOG_REF = 5

Analog reference input. Units: mV

TRACEVAR_HIGH_VOLT = 6

High voltage bus. Units: 0.1 V

TRACEVAR_CRNT_CMD = 7

Commanded current (before limiting). Units: 0.01 A

TRACEVAR_CRNT_LIM = 8

Commanded current (after limiting). Units: 0.01 A

TRACEVAR_CRNT_CMD_D = 9

Commanded current, D axis. Units: 0.01 A

TRACEVAR_CRNT_CMD_Q = 10

Commanded current, Q axis. Units: 0.01 A

TRACEVAR_CRNT_ACT_D = 13

Actual current, calculated for D axis. Units: 0.01 A

TRACEVAR_CRNT_ACT_Q = 14

Actual current, calculated for Q axis. Units: 0.01 A.

TRACEVAR_CRNT_ERR_D = 15

Current loop error, D axis. Units: 0.01 A

TRACEVAR_CRNT_ERR_Q = 16

Current loop error, Q axis. Units: 0.01 A

CMO Programmer’s Guide Linkage

 66 Copley Controls

TRACEVAR_VOLT_D = 19

Current loop output voltage, D axis. Units: 0.1 V

TRACEVAR_VOLT_Q = 20

Current loop output voltage, Q axis. Units: 0.1 V

TRACEVAR_VEL_MTR = 23

Motor velocity filtered. Units: 0.1 encoder counts / second

TRACEVAR_VLOOP_CMD = 24

Velocity loop commanded velocity (before limiting). Units: 0.1 encoder counts / second.

TRACEVAR_VLOOP_LIM = 25

Velocity loop commanded velocity (after limiting). Units: 0.1 encoder counts / second

TRACEVAR_VLOOP_ERR = 26

Velocity loop error. Units: 0.1 encoder counts / second

TRACEVAR_LOAD_POS = 28

Load encoder position. Units: encoder counts.

TRACEVAR_CMD_POS = 29

Commanded position from trajectory generator. Units: encoder counts

TRACEVAR_POS_ERR = 30

Position error. Units: encoder counts

TRACEVAR_MTR_POS = 31

Motor encoder position. Units: encoder counts

TRACEVAR_RAW_INPUTS = 33

Digital input pins (before debounce).

TRACEVAR_PHASE = 36

Motor phase angle. Units: 0.1 degree

TRACEVAR_TEMP = 37

Amplifier temperature. Units: degrees C

TRACEVAR_EVENTS = 38

Event status register.

TRACEVAR_EVENTLATCH = 39

Latched version of event status register

TRACEVAR_HALLS = 40

Hall sensor state

TRACEVAR_VEL_LOAD = 43

Load encoder velocity. Units: 0.1 encoder counts / second

TRACEVAR_CMD_VEL = 44

CMO Programmer’s Guide Linkage

 67 Copley Controls

Commanded velocity from trajectory generator.

Units: 0.1 encoder counts / second

TRACEVAR_CMD_ACC = 45

Commanded acceleration from trajectory generator. Units: 10 encoder counts / second

/ second

TRACEVAR_ENC_SIN = 46

Analog encoder sine. Units: 0.1 mV.

TRACEVAR_ENC_COS = 47

Analog encoder cosine. Units: 0.1 mV

TRACEVAR_INPUTS = 48

Digital input pins (after debounce)

TRACEVAR_DEST_POS = 49

Destination position. Units: encoder counts

TRACEVAR_VEL_RAW = 50

Motor velocity, unfiltered. Units: 0.1 encoder counts / second

TRACEVAR_PASSIVE_ENC_POS = 51,

Passive encoder position

TRACEVAR_GAIN_SCHED_KEY = 52,

Gain scheduling key

TRACEVAR_POS_P_GAIN = 53,

Position loop proportional gain

TRACEVAR_VEL_P_GAIN = 54,

Velocity loop proportional gain

TRACEVAR_VEL_I_GAIN = 55,

Velocity loop integral gain

TRACEVAR_AMP_I2T_SUM = 56,

Amplifier's I2T sum

TRACEVAR_USER_I2T_SUM = 57,

User's I2T sum

TRACEVAR_ANALOG_ENC_INDEX = 59,

Analog encoder index pulse

TRACEVAR_COMMANDED_U = 60,

Commanded current U

TRACEVAR_COMMANDED_V = 61,

Commanded current V

TRACEVAR_CUR_OFFSET_CSP = 62,

Current offset, CSP mode

CMO Programmer’s Guide Linkage

 68 Copley Controls

TRACEVAR_VEL_OFFSET_CSP = 63,

Velocity offset, CSP mode

TRACEVAR_RAW_ENCODER = 66

Raw encoder values

5.21 Other Methods and Properties

Methods

Reset ()

Description: Resets the Amplifier and re-initializes the Amplifier Object.

Parameters: None

SDO_Dnld (index As Short, sub As Short, data As Object)

Description: Downloads data to the amplifier via a CAN SDO transfer.

Parameters:

index Index of a CANopen dictionary object Units: None

sub Sub-index of a CANopen dictionary object Units: None

data The data that is to be transferred. This data can be

one of four types: 8-bit, 16-bit, 32-bit, or String

Units: None

SDO_Upld (index As Short, sub As Short, data As Object)

Description: Uploads data from the amplifier via a CAN SDO transfer.

Parameters:

index Index of a CANopen dictionary object Units: None

sub Sub-index of a CANopen dictionary object Units: None

data The data that is to be transferred. This data can be

one of four types: 8-bit, 16-bit, 32-bit, or String

Units: None

SDO_DnldExt (index As Short, sub As Short, data As Byte, size As Integer)

Description: Downloads data to the amplifier via a CAN SDO transfer.

Parameters:

index The input to configure. Inputs are numbered starting

from 0. Check amplifier data sheet for the number of

inputs available

Units: None

time The debounce time assigned to this input Units: None

data The data that is to be transferred Units: None

size The number of bytes of data to be downloaded Units: None

SDO_UpldExt (index As Short, sub As Short, data As Byte, size As Integer)

Description: Uploads data from the amplifier via a CAN SDO transfer.

Parameters:

index The input to configure. Inputs are numbered starting

from 0. Check amplifier data sheet for the number of

inputs available

Units: None

time The debounce time assigned to this input Units: None

data The data that is to be transferred Units: None

size On entry this gives the max number of bytes of data

to be uploaded. On successful return this gives the

actual number of bytes received

Units: None

CMO Programmer’s Guide Linkage

 69 Copley Controls

SetRPDO (slot As UShort, rpdo As RPDOObj)

SetTPDO (slot as UShort, tpdo As TPDOObj)

Description: Associates the passed RPDO/TPDO with the node.

Parameters:

slot The PDO slot to assign the PDO to Units: None

rpdo/tpdo The rpdo/tpdo object Units: None

EnableRPDO (slot As UShort, rpdo As RPDOObj)

EnableTPDO (slot As UShort, tpdo As TPDOObj)

Description: Enables the passed RPDO/TPDO in the corresponding slot.

Parameters:

slot The PDO slot to assign the PDO to Units: None

rpdo/tpdo The rpdo/tpdo object Units: None

DisableRPDO (slot As UShort)

DisableTPDO (slot As UShort)

Description: Disables the RPDO/TPDO in the corresponding slot.

Parameters:

slot The PDO slot number Units: None

SavePDOmappingToFlash (saveProfile As Boolean)

Description: Save the current PDO mapping to flash.

Parameters:

saveProfile If true, the device profile parameters will be saved Units: None

Properties

CountsPerUnit

Type: Double

Description: Adjustable number of encoder counts/user distance unit. The default value is 1.0

(user distance units are in encoder counts). Also controls velocity, acceleration,

and jerk units. These units are always based on a time interval of seconds.

Units: None

Default: None

AmpTemp

Type: Short

Description: Read-only. Get the current amplifier temperature

Units: degrees C

Default: None

HighVoltage

 Type: Short

Description: Read-only. Gets the high voltage bus voltage

Units: 0.1 V

Default: None

RefVoltage

Type: Short

Description: Read-only. Gets the analog reference input voltage

Units: mV

CMO Programmer’s Guide Linkage

 70 Copley Controls

Default: None

AmpMode

Type: CML_AMP_MODE

Description: Read-only. The currently active amplifier mode of operation

Units: None

Default: None

AmpModeWrite

Type: CML_AMP_MODE

Description: Change the amplifiers mode of operation

Units: None

Default: None

CML_AMP_MODE

AMPMODE_SERVO_CAN_PROFILE = 7681

A true CANopen position mode. The CANopen network sends move commands to the

amplifier, and the amplifier uses its internal trajectory generator to perform the moves.

Conforms to the CANopen Device Profile for Motion Control (DSP-402) profile position

mode

AMPMODE_SERVO_CAN_VELOCITY = 7683

In this mode the CANopen network commands target velocity values to the amplifier.

The amplifier uses its programmed acceleration and deceleration values to ramp the

velocity up/down to the target. Note that support for profile velocity mode was added in

amplifier firmware version 3.06

AMPMODE_SERVO_CAN_TORQUE = 7684

In this mode, the network controller sends target torque values to the drive. When the

drive is enabled, or the torque command is changed, the motor torque ramps to the

new value at the rate programmed in the property Torque Slope. When the drive is

halted, the torque ramps down at the same rate.

When using Profile Torque mode, the property HaltMode can be set to any mode except

HALT_DISABLE, because HALT_DISABLE will disable the amplifier with no torque ramp.

If the torque target value is changed while the amplifier is enabled, the torque will

ramp to the new target.

The units for torque target, demand, and actual are per thousand of the motor's rated

torque. The units for torque slope are per thousand of the motor's rated torque per

second.

The profile torque mode cannot be used with a stepper motor

AMPMODE_SERVO_CAN_HOMING = 7686

A true CANopen position mode. Used to home the motor (find the motor zero position)

under CANopen control. Conforms to DSP-402 homing mode

AMPMODE_SERVO_CAN_PVT = 7687

A true CANopen position mode. In this mode the CANopen master calculates the motor

trajectory and streams it over the CANopen network as a set of points that the

amplifier interpolates between. This mode conforms to the CANopen device profile for

motion control (DSP-402) interpolated position mode

AMPMODE_STEPPER_CAN_PROFILE = 10241

Same as AMPMODE_SERVO_CAN_PROFILE, but used with stepper capable amplifiers

CMO Programmer’s Guide Linkage

 71 Copley Controls

AMPMODE_STEPPER_CAN_VELOCITY = 10243

Same as AMPMODE_SERVO_CAN_ VELOCITY, but used with stepper capable amplifiers

AMPMODE_STEPPER_CAN_HOMING = 10246

Same as AMPMODE_SERVO_CAN_ HOMING, but used with stepper capable amplifiers

AMPMODE_STEPPER_CAN_PVT = 10247

Same as AMPMODE_SERVO_CAN_PVT, but used with stepper capable amplifiers

CMO Programmer’s Guide Linkage

 72 Copley Controls

6. Linkage

6.1 LinkageSettingsObj

Overview
The Linkage Settings Object contains the settings for the LinkageObj. All the properties have

both read and write access. This object is passed in as a parameter in the InitializeExt method

of the LinkageObj to customize the settings.

Example:
1 Declare and create an instance of LinkageSettingsObj.

Dim LinkageSettings As LinkageSettingsObj
LinkageSettings = New LinkageSettingsObj()

2 Change one or more properties of the LinkageSettingsObj.

LinkageSettings.moveAckTimeout = 400

3 Call one of the Extended Initialization methods of the ampObj.

Linkage.InitializeExt(ampArray, LinkageSettings)

Properties

moveAckTimeout

Type: Short

Description: Node guarding guard time. This property gives the node-guarding period for use

with this node. This is the period between node guarding request messages sent

by the master controller.

Units: mS

Default: 200

haltOnPosWarn

Type: Boolean

Description: When set to true, the linkage move will be halted when a position warning

occurs.

Units: none

Default: false

haltOnVelWin

Type: Boolean

Description: When set to true, the linkage move will be halted when the velocity is outside

the velocity window.

Units: none

Default: false

CMO Programmer’s Guide Linkage

 73 Copley Controls

6.2 LinkageObj

Overview
The Linkage Object allows the programmer to “link” a group of amplifiers to perform

coordinated motion. A move using the Linkage Object will start moving all the linked amplifiers

at the same time and end the move at the same time.

Methods

Initialize (ampArray As AmpObj)

Description: Initializes the Linkage object with the array of amp objects passed in as a

parameter. These amp objects will be linked together upon successful

initialization.

Parameters:

ampArray Array of one or more AmpObj (which have already

been initialized)

Units: None

InitializeExt (ampArray As AmpObj, linakeSettings as LinkageSettingsObj)

Description: Initializes the Linkage object with the array of amp objects and the linkage

settings passed in as parameters. The amp objects in the ampArray will be

linked together upon successful initialization.

Parameters:

ampArray Array of one or more AmpObj (which have already

been initialized)

Units: None

LinkageSettings Array of one or more AmpObj (which have already

been initialized)

Units: None

MoveTo (positionArray As Double)

Description: Performs a multi-axis move to the positions specified by an array containing one

position per axis.

Parameters:

positionArray Contains the target positions for each axis Units: Double

ReadMoveLimits (vel As Double, acc As Double, dec As Double, jrk As Double)

Description: Reads the limits for a move.

Parameters:

vel Velocity limit Units: User defined

units/second

acc Acceleration limit Units: User-defined

units/second2

dec Deceleration limit Units: User-defined

units/second2

jrk Jerk limit (maximum rate of change of

acceleration)

Units: User-defined

units/second3

SetMoveLimits (vel As Double, acc As Double, dec As Double, jrk As Double)

Description: Sets the limits for the move.

Parameters:

vel Velocity limit Units: User defined

units/second

CMO Programmer’s Guide Linkage

 74 Copley Controls

acc Acceleration limit Units: User-defined

units/second2

dec Deceleration limit Units: User-defined

units/second2

jrk Jerk limit (maximum rate of change of

acceleration)

Units: User-defined

units/second3

ampArray Array of one or more AmpObj (which have already

been initialized)

Units:

None

TrajectoryInitialize (positions As Double, velocities As Double, times As Integer,

lowWater As Integer)

Description: Initializes and starts a PVT (Position-Velocity-Time) trajectory move on a Linkage

Object. The linked amplifiers will queue up the PVT segments and find the best-fit

curve for each set of three PVT segments.

Parameters:

Positions A two-dimensional array of positions declared as

numOfSegments, numOfAxis

Units: Counts

Velocities A two-dimensional array of velocities declared as

numOfSegments, numOfAxis

Units: User

defined

units/second

Times A single dimensional array of delta time values

representing times from 1 to 255 milliseconds. A time

value of zero indicates to the amplifier that the

trajectory is complete. The length of this array, as of

the position and velocity arrays, must be equal to the

number of segments

Units: mS

lowWater This is the level of PVT segments left in the Copley

Motion Object buffer on the PC at which CMO

generates an event requesting more PVT segments.

This number must be less than the number of

segments

Units: None

SendPath (pathObj As PathPlanningObj, startPath As Boolean)

Description: Initializes a two-dimensional path on a Linkage Object. If the boolean value is

true, the path is executed immediately. If it is false, the path is loaded but not

executed.

Parameters:

pathObj A path planning object Units: None

startPath A boolean value defining whether to execute the path

immediately or not.

Units: None

SendPvtConstAccelTrj (pvtConstAccelTrjObj As PvtConstAccelTrjObj, startPvtTrj

As Boolean)

Description: Initializes a PVT trajectory on a Linkage Object. If the boolean value is true, the

PVT trajectory is executed immediately. If it is false, the trajectory is loaded but

not executed.

Parameters:

pvtConstAccelTrjObj A PVT constant acceleration trajectory object Units: None

startPvtTrj A boolean value defining whether to execute the

PVT trajectory immediately or not.

Units: None

CMO Programmer’s Guide Linkage

 75 Copley Controls

TrajectoryAdd (positions As Double, velocities As Double, times As Integer,

lowWater As Integer)

Description: This method adds PVT segments to the CMO PVT buffer waiting to be sent to the

amplifier. (Note: this buffer is used in addition to the 32-deep PVT buffer on the

amplifier.) This method is typically used within the handler for the

TrajectoryEventNotify event handler such that new PVT segments can be sent to

the amplifier when the CMO PVT trajectory generator reaches the lowWater level.

Parameters:

Positions A two dimensional array of positions declared as

numOfSegments, numOfAxis

Units:

Counts

Velocities A two dimensional array of velocities declared as

numOfSegments, numOfAxis

Units: User

defined

units/second

Times A single dimensional array of delta time values

representing times from 1 to 255 milliseconds. A time

value of zero indicates to the amplifier that the

trajectory is complete. The length of this array, as of

the position and velocity arrays, must be equal to the

number of segments

Units: mS

lowWater This is the level of PVT segments left in the Copley

Motion Object buffer on the PC at which CMO

generates an event requesting more PVT segments.

This number must be less than the number of

segments

Units: None

WaitMoveDone (timeout As Long)

Description: Wait until the multi axis move is complete. This method is blocking. When called,

it will not return until either the event occurs, the timeout expires, a fault occurs,

or a move is aborted. If a timeout occurs, CMO will report the timeout by

throwing an exception.

Parameters:

timeout The timeout for the wait. If < 0, then wait indefinitely Units: mS

HaltMove ()

Description: Halt the current move. The exact type of halt can be programmed individually for

each axis using the AmpObj property HaltMode.

Parameters:

None

CreateEvent (mask As CML_LINK_EVENT, condition As CML_EVENT_CONDITION)

As EventObj

Description: Creates an instance of the EventObj that monitors amplifier events and sets them

up using the specified parameters.

Parameters:

mask A bit-mapped value that indicates which events are to

be monitored

Units:

None

condition The trigger condition for the events that will result in

the event callback method being called (e.g. all events

in the mask). See

eventObject The EventObj instance created by this method

CMO Programmer’s Guide Linkage

 76 Copley Controls

 CML_LINK_EVENT

Value Bit Description

LINKEVENT_MOVEDONE 0 Set when all amplifiers attached to this linkage have

finished their moves and have settled in to position at
the end of the move. Cleared when a new move is
started on any amplifier.

LINKEVENT_TRJDONE 1 Set when all amplifiers attached to the linkage have
finished their moves, but have not yet settled into
position at the end of the move. Cleared when a new
move is started on any amplifier.

LINKEVENT_NODEGUARD 2 A node guarding (or heartbeat) error has occurred. This
indicates that one of the amplifiers failed to respond

within the expected amount of time for either a
heartbeat or node-guarding message.

LINKEVENT_FAULT 4 A latching fault has occurred on one of the amplifiers
attached to this linkage.

LINKEVENT_ERROR 5 A non-latching error has occurred on one of the
amplifiers.

LINKEVENT_POSWARN 6 One of the amplifiers is reporting a position-warning

event.

LINKEVENT_POSWIN 7 One of the amplifiers is reporting a position window

event.

LINKEVENT_VELWIN 8 One of the amplifiers is reporting a velocity window

event.

LINKEVENT_DISABLED 9 One of the amplifiers is currently disabled.

LINKEVENT_POSLIM 10 The positive limit switch of one or more amplifier is

currently active.

LINKEVENT_NEGLIM 11 The negative limit switch of one or more amplifier is

currently active.

LINKEVENT_SOFTLIM_POS 12 The positive software limit of one or more amplifier is
currently active.

LINKEVENT_SOFTLIM_NEG 13 The negative software limit of one or more amplifier is
currently active.

LINKEVENT_QUICKSTOP 14 One of the linkage amplifiers is presently performing a

quick stop sequence or is holding in quick stop mode.
The amplifier must be disabled to clear this.

LINKEVENT_ABORT 15 One or more amplifier aborted the last profile without
finishing.

LINKEVENT_LOWWATER 31 The active PVT profile is at or below the low water mark

and needs more data points.

CMO Programmer’s Guide The Event Object

Copley Controls 77

7. The Event Object

Overview
The eventObj allows an application program to be event-driven by having a function called when

an event occurs in the amplifier. This eliminates the need for polling for the event. The eventObj

is created by calling the CreateEvent method for: AmpObj, LinkageObj, and IOObj. The

recommended steps for using the EventObj are as follows:

1 Declare an EventObj variable:

// C#
eventObj xAxisEventObj;

'VB
Friend WithEvents YAxisEventObj As eventObj

2 Create the event:

// C#
xAxisEventObj = AmpX.CreateEvent(CML_AMP_EVENT.AMPEVENT_MOVE_DONE,
CML_EVENT_CONDITION.CML_EVENT_ANY);

'VB
xAxisEventObj = AmpX.CreateEvent(CML_AMP_EVENT.AMPEVENT_MOVE_DONE,
CML_EVENT_CONDITION.CML_EVENT_ANY)

3 Register the callback method with the eventObj.

// C#
xAxisEventObj.EventNotify += new eventObj.EventHandler(xAxisEventObj_EventNotify);

' VB
' In order to associate the callback method with the eventObj, select the eventObj
' variable from the variable list in Visual Studio as shown below. Then, select
' EventNotify from the list on the right. This will create the callback method.

4 Start the eventObj:

' C# and VB
xAxisEventObj.Start(False, 50000)

5 Implement the callback method to handle the event in a manner appropriate with the

application.

CMO Programmer’s Guide The Event Object

 78 Copley Controls

Methods

Start (repeats As Boolean, timeout As Long)

Description: Starts the event monitor.

Parameters:

repeats Set to true to set up the event monitor to perform a

callback each time the event occurs until the event

monitor is stopped. Set to false to set up the event

monitor to perform a callback on a one-time basis.

When set up for repeating events, the event condition

must go away, then come back for the event callback

to occur again

Units: None

timeout The timeout for the wait. If < 0, then wait indefinitely.

Units: milliseconds. If the timeout expires before the

event occurs, then the callback routine will be called

with its second parameter (hasError) set to true

Stop ()

Description: Stops the event monitor.

Parameters: None

Wait (timeout As Long)

Description: Wait on the event. This method is blocking. When called, it will not return until

either the event occurs, or the timeout expires. If a timeout occurs, CMO will

report the timeout in the form of a COM compatible error object.

Parameters:

timeout The timeout for the wait. If < 0, then wait indefinitely Units: mS

Callback

EventNotify (match As CML_AMP_EVENT, timeout As Boolean)

Description: Returns the contents of the register that was set up to trigger the event. The

timeout variable will be true if the timeout period expired.

Parameters:

match The contents of the register that was set up to trigger

the event

Units: None

timeout True if a timeout or error occurred, False otherwise.

Should be checked for an error condition before

processing the event handling code

CMO Programmer’s Guide The I/O Object

Copley Controls 79

8. The I/O Object

Overview
The functions described here support I/O devices that comply to the CiA profile DS-401:

CANopen Device Profile for Generic I/O Modules.

Methods

Initialize (canOpenObj As CANopenObj, nodeId As Integer)

Description: Initializes the I/O device with the CANOpenObj and the specified node ID.

Parameters:

canOpenObj An instance of a CanOpenObj that has already been

initialized

Units: None

nodeid The node ID of the I/O module Units: None

InitializeExt (canOpenObj As CANopenObj, nodeId As Integer, IOSettingsObj As

IOSettings)

Description: Initializes the I/O device with the CANOpenObj and the specified node ID. Also, through

the IOsettingsObj parameter, allows the CAN network settings for an I/O module to be set

at initialization time. This is necessary if PDO mapping is to be turned off for a particular
I/O module.

Parameters:

canOpenObj An instance of a CanOpenObj that has already been

initialized

Units: None

nodeid The node ID of the I/O module Units: None

IOsettingsObj Allows the CAN network settings for an I/O module to

be set at initialization time

Units: None

CreateEvent (mask As CML_IOMODULE_EVENTS, condition As

CML_EVENT_CONDITION) As EventObj

Description: Creates an instance of the EventObj that monitors I/0 events and sets them up

using the specified parameters.

Parameters:

mask A bit-mapped value that indicates which events are to

be monitored

Units: None

condition Trigger condition for the events that will result in the

callback method being called (e.g. all events in the

mask)

Units: None

CML_IOMODULE_EVENTS

IOEVENT_AIN_PDO0 = 0x10000

Trigger when any of the first 4 analog inputs generates an event.

IOEVENT_AIN_PDO1 = 0x20000

Trigger when any of the second 4 analog inputs generates an event

IOEVENT_AIN_PDO2 = 0x40000

Trigger when any of the third 4 analog inputs generates an event

IOEVENT_DIN_PDO0 = 0x0001

Trigger when first 64 digital inputs change state.

CMO Programmer’s Guide The I/O Object

 80 Copley Controls

SDO_Dnld (index As Integer, sub As Integer, data As Object)

Description: Downloads data to the IO module via a CAN SDO transfer.

Parameters:

index Index of a CANopen dictionary object Units: None

sub Sub-index of a CANopen dictionary object Units: None

data The data that is to be transferred. This data can be

one of four types: 8-bit, 16-bit, 32-bit, or String

Units: None

SDO_Upld (index As Integer, sub As Integer, data As Object)

Description: Uploads data from the IO module via a CAN SDO transfer.

Parameters:

index Index of a CANopen dictionary object Units: None

sub Sub-index of a CANopen dictionary object Units: None

data The data that is to be transferred. This data can be

one of four types: 8-bit, 16-bit, 32-bit, or String

Units: None

SDO_DnldExt (index As Integer, sub As Integer, data As Byte, size As Integer)

Description: Downloads data to the amplifier via a CAN SDO transfer.

Parameters:

index Index of a CANopen dictionary object. Units: None

sub Sub-index of a CANopen dictionary object Units: None

data The data that is to be transferred. This data is an

array of bytes

Units: None

size The number of bytes of data to be downloaded Units: None

SDO_UpldExt (index As Integer, sub As Integer, data As Byte, size As Integer)

Description: Uploads data from the amplifier via a CAN SDO transfer.

Parameters:

index Index of a CANopen dictionary object Units: None

sub Sub-index of a CANopen dictionary object Units: None

data The data that is to be transferred. This data is an

array of bytes

Units: None

size On entry this gives the max number of bytes of data

to be uploaded. On successful return this gives the

actual number of bytes received

Units: None

ioSettingsObj

Properties

useStandardDinPDO

Type: Boolean

Description: Use the standard digital input PDO object

Units: None

Default: true

UseStandardDoutPDO

Type: Boolean

Description: Use the standard digital output PDO object

Units: None

Default: true

CMO Programmer’s Guide The I/O Object

 81 Copley Controls

UseStandardAinPDO

Type: Boolean

Description: Use the standard analog input PDO object

Units: None

Default: true

UseStandardAoutPDO

Type: Boolean

Description: Use the standard analog output PDO object

Units: None

Default: true

heartBeatPeriod

Type: Short

Description: Configures the heartbeat period used by this IO module to transmit its heartbeat

message. If this property is set to zero, then the heartbeat protocol is disabled

on this module

Units: mS

Default: 0

heartbeatTimeout

Type: Short

Description: Additional time to wait before generating a heartbeat error

Units: mS

Default: 0

guardTime

Type: Short

Description: This object gives the time between node-guarding requests that are sent from

the network master to this IO module. The IO module will respond to each

request with a node-guarding message indicating the internal state of the IO

module. If the IO module has not received a node-guarding request within the

time period defined by the product of the guard time and the lifeFactor, the IO

module will treat this lack of communication as a fault condition

Units: mS

Default: 0

lifeFactor

Type: Short

Description: This property gives a multiple of the guardTime parameter. The IO module

expects to receive a node-guarding request within the time period defined by

the product of the guard time and the lifetime factor. If the IO module has not

received a node-guarding request within this time period, it treats this condition

as a fault

Units: None

Default: 3

CMO Programmer’s Guide The I/O Object

 82 Copley Controls

8.1 Analog Inputs

 Methods

Ain16Read (channel As Integer, value As Integer, viaSDO As Boolean)

Description: Reads a 16-bit analog input.

Parameters:

channel The analog input channel ID Units: None

value The analog input value read Units: None

viaSDO If True, read inputs using SDO transfer. If False

(default), use most recently received PDO data, if this

input is mapped to a transmit PDO and the PDO is

active

Units: None

AinTrigTypeRead (channel As Integer, trigger As CML_IO_AIN_TRIG_TYPE)

AinTrigTypeWrite (channel As Integer, trigger As CML_IO_AIN_TRIG_TYPE)

Description: Reads/writes the analog input trigger type associated with input channel. Use this

command to set/get the type of event associated with an analog input.

Parameters:

channel The analog input channel ID Units: None

trigger The analog input trigger type associated with input

channel

Units: None

CML_IO_AIN_TRIG_TYPE

IOAINTRIG_UPPER_LIM = 1

 Input above upper limit

IOAINTRIG_LOWER_LIM = 2

 Input below lower limit

IOAINTRIG_UDELTA = 4

 Input changed by more than the unsigned delta amount

IOAINTRIG_NDELTA = 8

 Input reduced by more than the negative delta amount

IOAINTRIG_PDELTA = 16

 Input increased by more than the positive delta

Ain16LowerLimitRead (channel As Integer, limit As Integer)

Ain16LowerLimitWrite (channel As Integer, limit As Integer)

Description: Reads/writes the analog input lower limit value as a 16-bit integer. The lower limit

defines the value at which an interrupt will be generated if it is enabled.

Parameters:

channel The analog input channel ID Units: None

limit The analog input lower limit value Units: None

Ain16NegativeDeltaRead (channel As Integer, delta As Integer)

Ain16NegativeDeltaWrite (channel As Integer, delta As Integer)

Description: Reads/writes the analog input negative delta value as a 16-bit integer. The

negative delta defines the amount of change at which an interrupt will be

generated if it is enabled.

CMO Programmer’s Guide The I/O Object

 83 Copley Controls

Parameters:

channel The analog input channel ID Units: None

delta The analog input negative delta value Units: None

Ain16PositiveDeltaRead (channel As Integer, delta As Integer)

Ain16PositiveDeltaWrite (channel As Integer, delta As Integer)

Description: Reads/writes the analog input positive delta value as a 16-bit integer. The

positive delta defines the amount of change at which an interrupt will be

generated if it is enabled.

Parameters:

channel The analog input channel ID Units: None

delta The analog input positive delta value Units: None

Ain16UnsignedDeltaRead (channel As Integer, delta As Integer)

Ain16UnsignedDeltaWrite (channel As Integer, delta As Integer)

Description: Reads/writes the analog input unsigned delta value as a 16-bit integer. The

unsigned delta defines the amount of change at which an interrupt will be

generated if it is enabled.

Parameters:
channel The analog input channel ID Units: None

Delta The analog input unsigned delta value Units: None

Ain16UpperLimitRead (channel As Integer, limit As Integer)

Ain16UpperLimitWrite (channel As Integer, limit As Integer)

Description: Reads/writes the analog input upper limit value as a 16-bit integer. The upper

limit defines the value at which an interrupt will be generated if it is enabled.

Parameters:

channel The analog input channel ID Units: None

Limit The analog input upper limit value Units: None

Properties

AinIntEnable

Type: Boolean

Description: Current setting of the global interrupt enable for analog inputs

Units: None

Default: False

8.2 Analog Outputs

Methods

Aout16Write (channel As Integer, value As Integer, viaSDO As Boolean)

Description: Writes to a 16-bit analog output.

Parameters:

channel The analog input channel ID Units: None

value The value to write Units: None

viaSDO If true, the outputs will be written using SDO

messages. If false (default), then a PDO will be used if

possible

Units: None

CMO Programmer’s Guide The I/O Object

 84 Copley Controls

AoutErrModeRead (channel As Integer, mode As Boolean)

AoutErrModeWrite (channel As Integer, mode As Boolean)

Description: Reads/writes the analog output error mode. If the error mode is True, then the

analog output will change its value to the programmed error value in the case of a

device failure. If False, a device failure will not cause a change in the analog

output value.

Parameters:

channel The analog output channel ID Units: None

mode The analog output error mode Units: None

Aout16ErrorValueRead (channel As Integer, error As Integer)

Aout16ErrorValueWrite (channel As Integer, error As Integer)

Description: Reads/writes the analog out error value.

Parameters:

channel The analog input channel ID Units: None

error The analog output error value Units: None

8.3 Digital Inputs

Methods

Din8Read (group As Integer, value As Integer, viaSDO As Boolean)

Description: Reads a group of 8 digital inputs.

Parameters:

group Identifies which group of 8 to read Units: None

value The value of the input Units: None

viaSDO If true, read inputs using the SDO transfer. If false

(default) use the most recently received PDO data if

this input group is mapped to a transmit PDO and the

PDO is active

Units: None

Din8MaskAnyRead (group As Integer, mask As Integer)

Din8MaskAnyWrite (group As Integer, mask As Integer)

Description: Reads/writes the ‘any transition’ interrupt mask setting for a group of 8 digital

inputs. For each input in the group, a value of 1 enables interrupts on any change,

and a value of 0 disables the interrupt.

Parameters:

group Identifies which group of 8 inputs to read/write Units: None

mask The ‘any transition’ interrupt mask Units: None

Din8MaskHigh2LowRead (group As Integer, mask As Integer)

Din8MaskHigh2LowWrite (group As Integer, mask As Integer)

Description: Reads/writes the ‘high to low’ interrupt mask setting for a group of 8 digital

inputs. For each input in the group, a value of 1 enables interrupts on a high to

low transition, and a value of 0 disables the interrupt.

Parameters:

group Identifies which group of 8 inputs to read/write Units: None

mask The ‘high to low’ interrupt mask Units: None

CMO Programmer’s Guide The I/O Object

 85 Copley Controls

Din8MaskLow2HighRead (group As Integer, mask As Integer)

Din8MaskLow2HighWrite (group As Integer, mask As Integer)

Description: Reads/writes the ‘low to high’ interrupt mask setting for a group of 8 digital

inputs. For each input in the group, a value of 1 enables interrupts on a low to

high transition, and a value of 0 disables the interrupt.

Parameters:

group Identifies which group of 8 inputs to read/write Units: None

mask The ‘low to high’ interrupt mask Units: None

Properties

DinIntEnable

Type: Boolean

Description: Current setting of the global interrupt enable of digital inputs

Units: None

Default: False

8.4 Digital Outputs

Methods

Dout8Write (group As Integer, value As Integer, viaSDO As Boolean)

Description: Writes a group of 8 digital outputs.

Parameters:

group Identifies which group of outputs to write Units: None

value Value to write to group Units: None

viaSDO If true, outputs are written using SDO message. If

false (default), a PDO is used if possible

Units: None

Dout8ErrModeRead (group As Integer, mode As Integer)

Dout8ErrModeWrite (group As Integer, mode As Integer)

Description: Reads/writes the current error mode setting of a group of 8 digital outputs. For

each output in the group, a value of 1 will cause the output to take its

programmed error value on a device failure. Setting the mode to 0 will cause the

output to hold its programmed value on failure.

Parameters:

group Identifies the group of outputs to read/write Units: None

mode The current error mode setting of a group of 8 digital

outputs

Units: None

Dout8ErrValueRead (group As Integer, error As Integer)

Dout8ErrValueWrite (group As Integer, error As Integer)

Description: Reads/writes the current error value setting for a group of 8 digital outputs. Error

values define the state of the output if a device failure occurs. The error value will

only be set for those output pins that have an error mode set to 1. Those with

error mode set to zero will not be changed by a device failure.

Parameters:

group Identifies the group of outputs to read/write Units: None

mode The current error value setting for a group of 8 digital

outputs

Units: None

CMO Programmer’s Guide CopleyMotionLibrary Object

Copley Controls 86

9. CopleyMotionLibrary Object
Properties

VersionString

Type: String

Description: The version number of Copley Motion Libraries (CML) used by CMO.

Units: None

Default: None

DebugLevel

Type: Integer

Description: Debug message level. Setting this property greater than zero results in debug

messages being written to a log file (see table below). The value set for

DebugLevel will result in that level, plus all lower levels being logged.

Therefore, if DebugLevel is set to 3, then levels 3, 2, and 1 are logged.

Setting this property to zero will result in the log file being closed.

Debug Level Description

0 Debug logging is disabled

1 Log serious errors only

2 Log warning messages and errors

3 Log debugging info

4 Not defined

5 Log most CAN messages (some common messages are

filtered out

6 Log all CAN messages

99 Log everything

Units: None

Default: 0 (no messages)

MaxLogSize

Type: Integer

Description: Maximum log file size. Once the log file exceeds MaxLogSize, it is renamed

logfilename.bak, and a new log file is started. Old backup log files are

overwritten.

Units: None

Default: 1,000,000 bytes

LogFileName

Type: String

Description: Name of the debug message log file. This file is used to log debug messages.

The file will be created (or truncated if it already exists) when the first message

is written to the file. Note that the debug level must be set > 0 for any

messages to be written.

Units: None

Default: "cml.log"

CMO Programmer’s Guide The Path Planning Object

87 Copley Controls

10. Layer Setting Service Object

Overview
The LSSObj allows the programmer to access CANopen devices on the network without the

node ID. The programmer can use this access to program the CANopen devices with specific

node IDs.

Methods

FindAndDisableAmps (serialArray As UInteger)

Description: Searches the CANopen network amplifiers and turns off the CAN LEDs. Returns

the number of amplifiers found.

Parameters:

serialArray An array where the amplifier serial numbers will be

returned

Units: None

EnableAmplifier (serial As Uinteger)

 DisableAmplifier (serial As UInteger)

Description: Enables/Disables the node causing the CAN LEDS to blink.

Parameters:

serial The serial number of the amplifier Units: None

SetAllAmplifierNodeIDs (serialArray As UInteger, idArray as Byte)

Description: Searches the CANopen network amplifiers and turns off the CAN LEDs. Returns

the number of amplifiers found.

Parameters:

serialArray An array where the amplifier serial numbers will be

returned

Units: None

idArray An array of the desired node IDs Units: None

SetTimeout (timeout As Single)

Description: Sets the timeout value used by the LSS protocol.

Parameters:

timeout The new timeout Units: mS

SwitchModeGlobal (config As Boolean)

Description: Set all devices on the network into either LSS configurational mode or operational

mode.

Parameters:

timeout If false, put all devices into operational mode Units: None

FindAmps (max As Integer, serialArray As UInteger)

Description: Search the CANopen network for Copley amplifiers. Returns the number of

amplifiers found.

Parameters:

max The maximum number of amplifier serial numbers to

be returned

Units: None

serialArray An array where the amplifier serial numbers will be

returned

Units: None

CMO Programmer’s Guide PDO Related Objects

 88 Copley Controls

StoreConfig (max As Integer, serialArray As UInteger)

Description: Save the current node ID and bit rate information in non-volatile (FLASH)

memory on the selected amplifier. When this is called, exactly one drive should be

in LSS configuration mode.

SetAmplifierNodeID (serial As UInteger, nodeID As Byte)

Description: Sets the CANopen node ID of the specified amplifier.

Parameters:

serial The serial number of the amplifier to update Units: None

nodeID The CANopen node ID to assign Units: None

SetNodeID (nodeID As Byte)

Description: Sets the CANopen node ID of the currently selected amplifier.

Parameters:

nodeID The CANopen node ID to assign Units: None

SelectAmp (serial As UInteger)

Description: Put the specified amplifier into LSS configure mode. All other amplifiers on the

network are switched into LSS operational mode.

Parameters:

serial The serial number of the amplifier to configure Units: None

SetBitRate (rate As UInteger)

Description: Send an LSS command to program the selected amplifier’s CAN bit rate. Valid bit

rates are listed under CML_BIT_RATES.
NOTE: This bit rate will not take effect until the bit rate is activated.

Parameters:

rate CANopen bit rate Units: b/s

ActivateBitRate (delay As UInteger)

Description: Activate the new bit rate previously set on all devices.

NOTE: This function does not change the bit rate of the local CAN port, it simply

returns after requesting the new rate on the LSS slave devices.

Parameters:

delay The delay which the LSS devices will use to ensure

that they all switch their bit rates at a time when no

device is transmitting.

Units: mS

Properties

userBitRate

Type: Integer

Description: The new bit rate value.

Units: bits/sec

Default: 1000000

ampCount

Type: Integer

Description: The number of amplifiers on the network.

Units: None

Default: 0

CMO Programmer’s Guide PDO Related Objects

 89 Copley Controls

11. PDO Related Objects
11.1 PDO mapping objects

Overview
The PDO mapping objects contain the data being mapped to the transmit or receive PDO. PDOs

can hold up to eight bytes of data and a maximum of four objects. The five types of Pmap objects

are Pmap32Obj, Pmap24Obj, Pmap16Obj, Pmap8Obj, and PmapObj. The PmapObj is used as an

array to hold the other PDO mapping objects.

Example:
1 Declare an instance of PmapObj as an array.

Dim pmapObj(0) As PmapObj

2 Create an instance of corresponding size for the object being mapped.

pmapObj(0) = New Pmap32Obj()

11.2 RPDOObj

Overview
The RPDO Object contains information about the amplifier’s receive process data objects

(received by the node). This object allows for mapping custom receive PDOs.

Example:
1 Declare and create an instance of RPDOObj.

Dim rpdoObj As RPDOObj
rpdoObj = New RPDOObj()

2 Initialize the receive PDO.

rpdoObj.Init(canID, varArray, objIDArray, type)

Methods

Init (canID As Integer, varArray As PmapObj, objIDArray As Integer, type As

Integer)

Description: Initializes the RPDO object with the PDO mapping variables and corresponding

object IDs and sets the PDO transmission type.

Parameters:

canID The CAN message ID associated with this RPDO. This

value should be unique

Units: None

varArray Pmap variables to be mapped Units: None

objIDArray Pmap variables’ object IDs Units: None

type PDO transmission type code Units: None

SendData (dataArray As Integer, index As Integer)

Description: Send the PDO with the new data.

Parameters:

dataArray An array holding the data to send to the amplifier Units: None

index This value represents the indexes of the PDO objects

to send. Ex. 1 sends index 0, 2 sends index 1, 3 sends

indexes 1 and 2, etc.

Units: None

CMO Programmer’s Guide PDO Related Objects

 90 Copley Controls

11.3 TPDOObj

Overview
The TPDO Object contains information about the amplifier’s transmit process data objects

(transmitted by the node). This object allows for mapping custom transmit PDOs.

Example:
1 Declare and create an instance of TPDOObj.

Dim tpdoObj As TPDOObj
tpdoObj = New TPDOObj()

2 Initialize the transmit PDO.

tpdoObj.Init(canID, varArray, objIDArray, type)

Methods

Init (canID As Integer, varArray As PmapObj, objIDArray As Integer, type As

Integer)

Description: Initializes the RPDO object with the PDO mapping variables and corresponding

object IDs and sets the PDO transmission type.

Parameters:

canID An array where the amplifier serial numbers will be

returned

Units: None

varArray Pmap variables to be mapped Units: None

objIDArray Pmap variables’ object IDs Units: None

type PDO transmission type code Units: None

SetRtrOk (ok As Integer)

Description: Enable or disable remote transmission requests (RTR) for this PDO.

Parameters:

ok Zero for no RTR, non-zero for RTR allowed Units: None

CMO Programmer’s Guide The Path Planning Object

91 Copley Controls

12. The Path Planning Object

Overview
The PathPlanningObj allows the programmer to plan two-dimensional paths using the methods

detailed below. Only two-dimensional paths are supported.

Example:
1 Declare an instance of PathPlanningObj.

Dim pathObj As PathPlanningObj

2 Create an instance of the object.

pathObj = New PathPlanningObj()

3 Declare a two-dimensional array of type double to represent a two-dimensional point.

The point can be used as an argument for several methods described below.

Dim point(1) As Double

Methods

SetStartPos (positionArray As Double)

Description: Set the internal position for the path. It is recommended that the starting position

be equal to the current position of both axes. If not used, the default starting

position will be (0, 0). The starting segment may be set at any time, either before

or after adding segments to the path. Internally, the segments are stored as

relative positions.

Parameters:

positionArray A two-dimensional array defining the starting point of

the path.

Units:

Counts

AddLine (destinationArray As Double)

Description: Add a line segment from the current position to the specified point. The direction

of motion required to move from the current position to the given point will be

compared to the direction of motion at the end of the last segment. If these

directions change then the addition of this new point will require an abrupt change

in direction. In this case, the initial velocity will be set to zero.

Parameters:

destinationArray A two-dimensional array defining the end point

(destination) of the line.

Units:

Counts

AddLine (length As Double)

Description: Add a line segment of the specified length. The direction of motion will remain the

same as it was at the end of the last added segment. If this is the first segment

added to the path, then the direction will be positive motion in the first axis.

Parameters:

length A double value defining the length of the line segment. Units:

Counts

CMO Programmer’s Guide PDO Related Objects

 92 Copley Controls

AddArc (centerArray As Double, angle As Double)

Description: Add an arc with the specified center point and angle (radians). The arc will start

at the current position and will move in the clockwise (positive angle) or

counterclockwise (negative angle) direction.

Parameters:

centerArray

angle

A two-dimensional array defining the center of the arc.

A double value defining the number of radians through

which to rotate.

Units:

Counts,

Radians

AddArc (radius As Double, angle As Double)

Description: Add an arc with the specified radius and angle (radians). The arc will start at the

current position and will move in the clockwise (positive angle) or

counterclockwise (negative angle) direction.

Parameters:

radius

angle

A double value defining the radius of the arc.

A double value defining the number of radians through

which to rotate.

Units:

Counts,

Radians

Pause (time As Double)

Description: Add a time delay to the path.

Parameters:

time A double value defining the time delay to add to the

path in seconds.

Units:

Seconds

PlayPath(timeIncrement As Double, positionArray As Double, velocityArray As

Double)

Description: Play back path data for display purposes. Before starting a path playback, the

path should be reset using the path.reset() method. Each call to this function will

return position and velocity information for the current playback position in the

path. It will then increment the playback position by the time value passed. When

the end of the path is reached, the method will return true. If the end has not

been reached, it will return false.

Parameters:

timeIncrement

positionArray

velocityArray

A double value defining the amount of time to

increment the playback position after reading out the

position and velocity values.

A two-dimensional array where position information

will be returned.

A two-dimensional array where velocity information

will be returned.

Units:

Seconds

Counts

Counts/sec

Reset ()

Description: Reset the path to the first position.

Parameters: None.

 Units: None

SetMaxVel (velocity As Double)

Description: Set the velocity limit for the current location. Velocity limits must be greater than

zero.

Parameters:

velocity A double value defining the maximum velocity. Units:

Counts/sec

CMO Programmer’s Guide PDO Related Objects

 93 Copley Controls

SetMaxAcc (acceleration As Double)

Description: Set the acceleration limit for the current location. Acceleration limits must be

greater than zero.

Parameters:

acceleration A double value defining the maximum acceleration. Units:

Counts/sec2

SetMaxDec (deceleration As Double)

Description: Set the deceleration limit for the current location. Deceleration limits must be

greater than zero.

Parameters:

deceleration A double value defining the maximum deceleration. Units:

Counts/sec2

SetMaxJrk (jerk As Double)

Description: Set the jerk limit for the current location. Jerk limits must be greater than zero.

Parameters:

jerk A double value defining the maximum jerk. Units:

Counts/sec3

GetDim ()

Description: Used to return the dimension of the path. Currently, only two-dimensional paths

are supported. Therefore, it will always return the integer: 2.

Parameters: None.

 Units: None

CMO Programmer’s Guide PDO Related Objects

 94 Copley Controls

13. The PvtConstAccelTrj Object
Overview
The PvtConstAccelTrjObj allows the programmer to stream PVT data to a linkage object via the

linkage object’s SendPvtConstAccelTrj method. The user will enter position and time data into

the PvtConstAccelTrj object using the AddPvtPoint method. CMO will calculate the correct

velocity data to use in the profile. The velocities calculated will result in a profile that produces

constant acceleration (as constant as possible).

The Init method must be called on the PvtConstAccelTrj object and data should be entered

before use in a linkage object. During execution of the trajectory, if there is only one PVT point

remaining, CMO will set the time value to zero, ending the move correctly. After a PVT point is

executed by the trajectory generator, it is permanently deleted from memory. Hence, the

PvtConstAccelTrj object will be empty after the PVT profile is executed and should be loaded

with more PVT points via the AddPvtPoint method before being sent to the trajectory generator

again via the linkage object.

Example:
1 Declare an instance of PathPlanningObj.

Dim pvtConstAccelTrjObj As PvtConstAccelTrjObj

2 Create an instance of the object.

pvtConstAccelTrjObj = New PvtConstAccelTrjObj()

3 Initialize the object with the number of dimensions in the linkage.

Dim point(2) As Double

Methods

Init (dimension As Integer)

Description: Set the dimension (number of axes) in the trajectory.

Parameters:

dimension An integer setting the number of dimensions of the

trajectory

Units:

None

AddPvtPoint (positionsArray As Double, timeValue As Integer)

Description: Add a PVT point to the trajectory.

Parameters:

positionsArray An array with length equal to the number of

dimensions in the trajectory. Each index

corresponds to an axis in the linkage.

Units:

Counts

timeValue An integer representing the time between this PVT

point and the next PVT point.

Units:

Milliseconds

GetPvtData (emptyPosArray As Double, emptyVelArray As Double, time As

Integer, index As Integer)

Description: Return the PVT data for the PVT point specified by the index. The empty arrays

are filled with position and velocity data. The time argument is overwritten with

the time value for the PVT point.

Parameters:

CMO Programmer’s Guide PDO Related Objects

 95 Copley Controls

emptyPosArray An array with length equal to the number of

dimensions in the trajectory. Each index

corresponds to an axis in the linkage.

Units:

Counts

emptyVelArray An array with length equal to the number of

dimensions in the trajectory. Each index

corresponds to an axis in the linkage.

Units:

0.1

Counts/Sec

time An integer to be overwritten. Units:

Milliseconds

index An integer signifying the index of the PVT point to

retrieve. The first PVT point will have index 0.

Units: None

CMO Programmer’s Guide PDO Related Objects

 96 Copley Controls

CMO Programmer’s Guide

16-01041

Revision 04

December 2021

© 2021
Copley Controls

20 Dan Road
Canton, MA 02021 USA

All rights reserved

