

CPL User Guide

 P/N 16-124981
Rev 00

November 2019

CPL User Guide

Copley Controls iii

This page for notes

Copley Controls 4

TABLE OF CONTENTS

About This Manual ... 6
1: Introduction .. 9

1.1: Overview ... 10
1.2: Specifications .. 10
1.3: Host Computer Requirements .. 10

2: Installation, Startup, and Communications ... 11
2.1: Install CPL Software ... 12
2.2: Configure Communications .. 13

3: Language Basics ... 15
3.1: Structure of a CPL Program ... 16
3.2: Data Types.. 17
3.3: Variables ... 18
3.4: Registers ... 23
3.5: Operators .. 23
3.6: Expressions, Statements and Blocks ... 28
3.7: Program Control Flow Statements .. 29
3.8: Functions .. 34

4: System Functions .. 37
4.1: System Functions ... 38
4.2: Definitions ... 40

5: Interrupts .. 52
5.1: Introduction ... 53
5.2: Interrupt Types .. 54
5.3: Interrupt Handler Routines .. 55
5.4: Global Enable/Disable Interrupts .. 56
5.5: Interrupt Status ... 56
5.6: Good Practices ... 56

6: Using CPL Integrated Development Environment (IDE) ... 59
6.1: Quick Start Guide ... 60
6.2: Working with Projects ... 60
6.3: CPL Interface Tour ... 65
6.4: Using the Debugger .. 73

A: Reserved Words ... 77
A.1 Reserved Words .. 77

CPL User Guide About this Manual

Copley Controls 5

Copley Controls 6

ABOUT THIS MANUAL

Overview and Scope

Copley Programming Language (CPL) is a high level programming language used to run on
Copley’s Virtual Machine (CVM). This manual describes the installation and use of CPL.

Related Documentation

CANopen-related documents:

• Copley ASCII Interface Programmer’s Guide (describes how to send ASCII format
commands over an RS232 serial bus to control one or more amplifiers)

• Copley Amplifier Parameter Dictionary (describes the parameters used to program
and operate Copley Controls amplifiers)

Links to these publications, along with hardware manuals and data sheets, can be found under the
Documents heading at: http://www.copleycontrols.com/Motion/Downloads/index.html

Copley Controls software and related information can be found at:
http://www.copleycontrols.com/Motion/Products/Software/index.html

Comments

Copley Controls welcomes your comments on this manual. See http://www.copleycontrols.com for
contact information.

Copyrights

No part of this document may be reproduced in any form or by any means, electronic or
mechanical, including photocopying, without express written permission of Copley Controls.

Copley Programming Language, CPL, Copley Virtual Machine, CVM, Xenus Plus, Accelnet Plus,
and Stepnet Plus are registered trademarks of Copley Controls.
Windows 7, and Windows XP are trademarks or registered trademarks of the Microsoft
Corporation.

Document Validity

We reserve the right to modify our products. The information in this document is subject to change
without notice and does not represent a commitment by Copley Controls. Copley Controls
assumes no responsibility for any errors that may appear in this document.

http://www.copleycontrols.com/Motion/Downloads/index.html
http://www.copleycontrols.com/Motion/Products/Software/index.html
http://www.copleycontrols.com/

CPL User Guide About this Manual

Copley Controls 7

Product Warnings

Observe all relevant state, regional and local safety regulations when installing and using Copley
Controls amplifiers. For safety and to assure compliance with documented system data, only
Copley Controls should perform repairs to amplifiers.

!

DANGER

Hazardous voltages.

Exercise caution when installing and adjusting Copley amplifiers.

Risk of electric shock.

On some Copley Controls amplifiers, high-voltage circuits are connected to mains
power. Refer to hardware documentation.

Risk of unexpected motion with non-latched faults.

After the cause of a non-latched fault is corrected, the amplifier re-enables the PWM
output stage without operator intervention. In this case, motion may re-start
unexpectedly. Configure faults as latched unless a specific situation calls for non-
latched behavior. When using non-latched faults, be sure to safeguard against
unexpected motion.

Latching an output does not eliminate the risk of unexpected motion with non-

latched faults.

Associating a fault with a latched, custom-configured output does not latch the fault
itself. After the cause of a non-latched fault is corrected, the amplifier re-enables
without operator intervention. In this case, motion may re-start unexpectedly.

For more information see:

When operating the amplifier as a CAN node, the use of CPL or ASCII serial
commands may affect operations in progress. Using such commands to initiate motion
may cause network operations to suspend.

Operation may restart unexpectedly when the commanded motion is stopped.

Use equipment as described.

Operate amplifiers within the specifications provided in the relevant hardware manual
or data sheet.

FAILURE TO HEED THESE WARNINGS CAN CAUSE EQUIPMENT DAMAGE,

INJURY, OR DEATH.

About this Manual CPL User Guide

8 Copley Controls

Revision History

Revision Date Comments

00 Nov 2019 Initial Release to Agile

Copley Controls 9

CHAPTER
1: INTRODUCTION

This chapter provides an overview of the Copley Controls CPL programming language.

Topics include the following:
Title Page
1.1: Overview ... 10
1.2: Specifications .. 10

1.2.1: CVM Memory ... 10
1.2.2: Supported Drives ... 10

1.3: Host Computer Requirements .. 10
1.3.1: Computer and Operating System .. 10

Introduction CPL User Guide

10 Copley Controls

1.1: Overview
CPL is a high level programming language for writing custom CVM programs to single or dual axis
Copley drives. CPL expands on Indexer 2’s capabilities with interrupts and features that are faster
and more flexible with looping and branching capabilities.

This manual provides detailed information on writing code and running, testing and debugging
programs.

1.2: Specifications

1.2.1: CVM Memory

• RAM: 8K Words

• Flash Memory: 32K Words

1.2.2: Supported Drives

• Xenus Plus series

• Accelnet Plus series (Does not include the AEP)

• Stepnet Plus series

1.3: Host Computer Requirements

1.3.1: Computer and Operating System

Operating systems Supported:

• Windows 7, 8, 10

Copley Controls 11

CHAPTER
2: INSTALLATION, STARTUP, AND

COMMUNICATIONS

This chapter describes how to install, start, and set up communications for CPL. Perform the steps
outlined below.

Topics include the following:
Title Page
2.1: Install CPL Software ... 12
2.2: Configure Communications .. 13

2.2.1: Choose a Communications Type ... 13
2.2.2: Configure Settings ... 14

Installation, Startup and Communications CPL User Guide

12 Copley Controls

2.1: Install CPL Software

 Optionally download software from the Web

1 Choose or create a folder where you will download the software installation file.

2 In an internet browser, navigate to:
http://www.copleycontrols.com/Motion/Downloads/index.html

3 Under Software Releases, click on CPL.

4 Enter user name and password.

5 When prompted, save the CPL.zip file to the folder chosen or created in Step 1.
The folder should now contain a file named CPL.zip.

6 Extract the contents of the zip file to the same location.
The folder should now contain the files CPL.zip and Setup.exe.

7 If desired, delete CPL.zip to save disk space.

 Install CPL Software from a CD or hard drive

1 If installing from a CD, insert the CD (Copley Controls part number CPL).
Normally, inserting the CD causes the installation script to launch, and a CPL Installation
screen appears. If so, skip to Step 3.

2 If the software installation file is on a hard drive, navigate to the folder and then double-
click on Setup.exe
OR
if you inserted the CD and the CPL Installation screen did not appear, navigate to the
root directory of the installation CD and then double-click on Setup.exe.

3 Respond to the prompts on the CPL Installation screens to complete the installation. We
recommend accepting all default installation values.

http://www.copleycontrols.com/Motion/Downloads/index.html

CPL User Guide Installation, Startup, and Communications

Copley Controls 13

2.2: Configure Communications

2.2.1: Choose a Communications Type

In the Menu Bar choose Tools→Communications Wizard. Choose a communication type and

click Next.

There are three communication types to choose from:

Serial Communications

For each PC-to-amplifier connection via serial port:

• One standard RS-232 serial port or a USB port with a USB-to-RS-232 adapter.

• One serial communication cable. See amplifier data sheet for part numbers.

CANopen Communications Protocol

• One Copley Controls CAN PCI network card (part number CAN-PCI-02).
CPL also supports CAN network cards made by these manufacturers: Copley, KVaser
and IXXAT.

• One PC-to-amplifier CANopen network cable. See amplifier data sheet for part
numbers.

See the amplifier data sheet for CAN network wiring instructions.

EtherCAT Communication Network

• One Ethernet adapter.

• One EtherCAT network cable, (see data sheet).

Installation, Startup and Communications CPL User Guide

14 Copley Controls

2.2.2: Configure Settings

Serial Communications

Select a COM port and baud rate then click Finish.

CANopen Communications

Select the CAN card, channel and Bit Rate and click Finish.

Copley Controls 15

CHAPTER
3: LANGUAGE BASICS

This chapter explains the language basics of CPL.

Topics include the following:
Title Page
3.1: Structure of a CPL Program ... 16

3.1.1: The main() Function .. 16
3.1.2: Global Variables and Functions ... 16

3.2: Data Types.. 17
3.2.1: Primitive Data Types .. 17
3.2.2: Derived Data Types ... 18

3.3: Variables ... 18
3.3.1: Naming Variables .. 18
3.3.2: Global and Local Variables .. 19
3.3.3: Constants... 20
3.3.4: Declaring Variables ... 20
3.3.5: Declaring Structs ... 22

3.4: Registers ... 23
3.5: Operators .. 23

3.5.1: Arithmetic ... 23
3.5.2: Unary ... 23
3.5.3: Equality and Relational .. 24
3.5.4: Conditional ... 24
3.5.5: Bitwise ... 24
3.5.6: Assignment Operator (=) and Compound Assignment Operators: .. 26
3.5.7: Misc ... 26
3.5.8: Operator Precedence .. 27

3.6: Expressions, Statements and Blocks ... 28
3.6.1: Expressions ... 28
3.6.2: Statements... 28
3.6.3: Blocks .. 28

3.7: Program Control Flow Statements .. 29
3.7.1: While Loop ... 29
3.7.2: For Loop .. 30
3.7.3: If Statement ... 31
3.7.4: Switch Statement ... 32
3.7.5: Break ... 33
3.7.6: Continue .. 33

3.8: Functions .. 34
3.8.1: Passing by Value ... 34
3.8.2: Passing by Reference .. 34
3.8.3: Return Type ... 34
3.8.4: Function Name .. 34
3.8.5: Parameter List ... 35
3.8.6: Return Statement ... 35
3.8.7: Calling Functions ... 36

Language Basics CPL User Guide

16 Copley Controls

3.1: Structure of a CPL Program
There are three parts to a CPL program:

• main() entry point function

• Global variables

• Functions.

3.1.1: The main() Function

The main() function is the entry point for every CPL program, therefore every CPL program must

contain exactly one main() function. Program execution starts with the first line of code in

main(). The syntax is:

main()

end main

The main() function, and functions, can contain any number of local variables, statements, and

function calls.

3.1.2: Global Variables and Functions

Global variables and functions are optional and are declared outside of main().Below is an

example of the main() function with a global variable and a function declaration.

int x

main()

end main

function void startMove()

end function

Go to Global and Local Variables (p.19) for a more thorough description of global
variables.

Go to Functions (p. 34) for a more thorough description of a function.

This is the global variable declared outside
of the main() function

This is the main() function

This is the function outside of the main()

function

CPL User Guide Language Basics

Copley Controls 17

3.2: Data Types

3.2.1: Primitive Data Types

There are 5 primitive data types available in CPL: short, ushort, int, uint, and float,.

Each has its own range. When a primitive data type is called for, it is recommended that int or

float be used. Use short only when it is required in the system functions. For size and range

details please see the table below.

Primitive Data Types

Type Size Range

short 16-bit signed -32768 to 32767

ushort 16-bit unsigned 0 to 65535

int 32-bit signed –2,147,483,648 to 2,147,483,647

uint 32-bit unsigned 0 to 4294967295

float
32-bit IEEE 754
floating point number

Positive Range: 1.1754944E-38 to 3.4028235E+38
Zero: 0.0
Negative Range: -3.4028235E+38 to -1.1754944E-
38

Literals

Literals are hard coded numbers for primitive data types.

Examples:

• int and short can be represented as decimal or hex. Hex numbers are preceded by
0x. The x can be upper or lower case.

For example: 16 or 0x10

• floats can be represented with or without exponent

For example: 150.0 or 1.5E2

Note: Default data type for literal numbers is int and float

Promoting data

Promoting data converts a value from a smaller data type into a larger data type, such as short to

int, short to float, or int to float. Because the value was originally in the range of a smaller

data type, promoting it into a larger data type will not change its value.

Demoting data

Demoting data converts a value from a larger data type into a smaller data type, such as int to

short, float to int, or float to short. When demoting data, it is possible to lose data because

the value in the larger data type could be outside the value range allowed in the smaller data type.
For instance, if an int is demoted to a short it will lose its upper 16 bits of data. In this case the

compiler will generate a warning.

Language Basics CPL User Guide

18 Copley Controls

3.2.2: Derived Data Types

CPL uses two derived data types, arrays and structs. They are both a collection of primitive

data types grouped as a single variable.

• Note: Assigning one array or struct to another array or struct is not allowed.

Arrays

An array is a fixed number of values of a single primitive data type. The size of the array is
specified, as a positive integer, when it is declared, and cannot be changed. The values inside the
array are called elements. Each element is referred to by its index. The first index is zero. The last
index is the array size minus one. The first and last elements of the array are its bounds.

CPL does not perform run-time checking of array bounds. Reading outside the array bounds will
result in indeterminate values being returned. Writing outside of the array bounds will result in
overwriting memory, causing unpredictable program operation. It is highly recommended that
bounds checking be performed before accessing an array.

Below is an array that has a size of 9 with array bounds of 0 and 8.

21 3 4 5 6 7 80

 Array size (9)

45 55 23 134 5582 132 367 98
Elements

Indices

Array bounds

Structs

A struct is a collection of values using one or more primitive data types. The keyword struct is

required, followed by a struct name, called a tag. Structs are useful for grouping related values
using a single variable.

For example:

struct movelimits

int velocity

int accel

int decel

end struct

members

tag

For more examples of structs see Declaring Structs on page 22.

3.3: Variables
Variables are memory locations, referred to by a name, that store values for use in a program.

3.3.1: Naming Variables

When naming variables, keep the following in mind:

• Letters, numbers, or underscores can be used when naming a variable (may not
start with a number).

• Variable names are case sensitive.

• There is no size limit to a variable name.

CPL User Guide Language Basics

Copley Controls 19

3.3.2: Global and Local Variables

Variables can be Global or Local.

Global variables

Any variable declared outside of a function, including main(), is a global variable. Global variables

are visible to any function, and can be used by any function. Global variables declared in one file
can also be used in another file. An example of a global variable is contained in the diagram
below.

Local variables

Variables that are declared inside a block of code are called local variables. A block of code is
either a function or one of the program control flow statements. Local variables can be defined
anywhere in the block, but they must be declared before they can be used. They can be initialized
with numeric values, global variables, expressions, function calls, and other local variables (if
previously defined in the function). An example of a local variable is contained in the diagram
below.

Visibility of variables

The degree of access to variables in a program depends on the block in which they are defined,
and where those blocks are situated with respect to other blocks. This is called visibility or scope.
The diagram below, and its accompanying text, describes the visibility of global and local variables
within a program.

main()

end main

int b

while()

end while

int c

for()

int a = 0

end for

int d = a+b+c

In the example above:

• a is global

• b, c, and d are locals

• a can be used in any function or block within a function

• b can be used anywhere in the main() function or any of main()’s enclosed

blocks, after it’s declared

• c can only be used within the while block, which includes the for block (after its

declared)

• d can be used only in the for block (after its declared)

Language Basics CPL User Guide

20 Copley Controls

3.3.3: Constants

When the keyword const appears in a variable declaration, the variable’s initial value cannot be

changed.

3.3.4: Declaring Variables

All variables must be given a data type and a name in order for them to be used in a program.
This declaration informs the compiler how much space to reserve in memory and what name will
be used to refer to that memory location. If a variable is not given an initial value it will default to
zero. The following shows how to declare and initialize variables.

// declare variables

int a

float b

// declare and initialize variables

int a = 1

float b = 1.4

// declare and initialize on the same line

int a = 1, b = 2, c

// declare a constant

const int MOVE_DISTANCE = 10000

Declaring primitive types

To declare a primitive type the following is needed:

• data type

• variable name

• initial value (optional)

If no initial value is provided, the primitive type will be set to the default value of 0.

Declaring arrays

To declare an array the following is needed:

• data type

• variable name

• array size

• Initial values (optional)

The size must be a positive integer. The array size must be a literal or const variable. The array
size can be accessed by using the array name and the reserved word size, separated by the dot
operator. For example:

myArrayVar.size

CPL User Guide Language Basics

Copley Controls 21

Certain rules also apply when initializing arrays. Arrays must be initialized with literals only. If no
initial values are provided, the array will be set to the default value of 0. Keep in mind that if
element values are provided, values must be provided for all elements in the array.

Examples of array declarations:

// declare an array with three elements

int velArray[3]

// declare multiple arrays of the same type

int velArray[3], accelArray[3], decelArray[3]

// declare and initialize an array with three

// elements

int velArray[3] = 4, 5, 6

Language Basics CPL User Guide

22 Copley Controls

3.3.5: Declaring Structs

There are two steps involved in using structs: defining the struct, and declaring the struct variable.

1. Define the struct

To define a struct it must have the keyword struct and a tag name (any valid variable

name). Struct members must also be declared using primitive variable declarations.
Members cannot be arrays or other structs.

struct movelimits

int velocity

int accel

int decel

end struct

members

tag

The example below defines a struct.

// define a struct with MoveLimits as the tagname

struct MoveLimits

 int vel

 int accel

 int decel

end struct

2. Declare the struct variable

To declare a struct variable the following is needed:

• The keyword struct

• The tag name chosen from step 1 above

• A variable name

See the example below.

// declare a variable of the MoveLimits struct type

struct MoveLimits limits

// declare and initialize a variable of the

// MoveLimits struct type

struct MoveLimits limits = 100000, 200000,200000

To access struct members the variable name from step 2 above is needed, followed by a
dot operator (.), and the struct member name. See the example below.

// access a member of the struct

limits.vel = 250000

CPL User Guide Language Basics

Copley Controls 23

3.4: Registers
CPL has 32 registers that can be used to pass data to and from external controllers to CPL
programs. Each register is 32 bits long. The syntax for program registers is $Rn, where n is a
register number (0-31).

$R0 = 34

Control applications (HMI, PLC, or PC-based programs) can use any of the supported protocols to
read and write the CPL registers. Supported protocols include the Copley ASCII Interface,
CANopen.

Current register values can also be viewed in the IDE as long as the drive is connected.

To view Program Registers see CVM Program Registers (p.72).

• Note: When a CPL program is started the register values are always set to zero.

3.5: Operators
Operators are a set of symbols that perform specific operations on values (also called operands) in
a function, and then return a result. Details of specific kinds of operators used in CPL follow.

3.5.1: Arithmetic

Basic arithmetic operators

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

Returns the remainder of an integer division.

Example: 5 % 3 = 2

3.5.2: Unary

Operators that require one operand

- Unary minus

negates an expression show example

! Logical complement

converts a non-zero operand to a 0, and a zero to a 1

++ Increment

Increments a value by 1.

Must be used with a variable and not a constant or literal.

May be used pre-incrementally (++a), or post-incrementally (a++). If used to increment a simple
standalone statement, the pre and post increments result is the same (a++ would equal ++a).

However, If used in a larger expression, the post incremented expression a++ evaluates to the
original value, while the pre incremented expression ++a evaluates to the incremented value.

-- Decrement

Decrements a value by 1.

Follows the same rules as the increment operator.

Language Basics CPL User Guide

24 Copley Controls

3.5.3: Equality and Relational

Used to test if values are equal to, less than or greater than each other. A relational expression
evaluates to 1 if the expression is true. It evaluates to 0 if the expression is false.

== Equal to

!= Not equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

3.5.4: Conditional

Used to compare two or more relational expressions

&& Conditional AND

If both operands are non-zero, the result is 1, otherwise the result is zero. When the result is
non-zero, the remaining expressions are not evaluated.

Example: (x>2) &&(x<10)

In the above conditional AND operation, the condition is met (evaluates to 1) if x=3 through 9.
Consequently, the remaining expressions are not evaluated.

|| Conditional OR

If either operand is non-zero the result is 1, otherwise the result is zero. When the result is non-
zero, the remaining expressions are not evaluated.

Example: (x==3) II (x==4)

In the above conditional OR operation, the condition is met (evaluates to 1) if x=3 or 4.
Consequently, the remaining expressions are not evaluated.

3.5.5: Bitwise

Operations are performed on integers in their binary form.

~ Complement (also a unary operator)

inverts a bit pattern.

Example: In the digital form: ~0 becomes 1

1 becomes 0

0110 becomes a 1001

& AND

When two corresponding bits both equal 1, a 1 is returned, otherwise a 0 is returned.

Example: 6 & 4 = 4

The binary view of the same operation:

0110

0100

0100

An AND operation requires two operands.

CPL User Guide Language Basics

Copley Controls 25

| OR

When either of two corresponding bits equal 1, a 1 is returned. Otherwise a 0 is returned.

Example: 6 | 4 = 6

The binary view of the same operation:

0110

0100

0110

An OR operation requires two operands.

^ Exclusive OR

When either of two corresponding bits are the same, a 0 is returned, otherwise a 1 is returned.

Example: 6 ^ 4 = 2

The binary view of the same operation:

0110

0100

0010

An exclusive OR operation requires two operands.

<< Left shift

Shifts the bits of an integer, in its binary form, a given number of spaces.

Example:

1 << 3 = 8

The binary view of the same operation:

0001 << 3 = 1000

>> Unsigned right shift

Shifts the bits of an integer, in its binary form, to the right by a given number, consequently the
most significant bit (MSB) becomes 0.

Example:

8 >> 3 = 1

The binary form of the same operation:

1000>>3=0001

>>> Signed right shift

Shifts the bits of an integer, in its binary form, to the right by a given number, and the MSB
remains unchanged.

Example:

8 >>> 3 = 9

The binary form of the same operation:

1000>>3=1001

Language Basics CPL User Guide

26 Copley Controls

3.5.6: Assignment Operator (=) and Compound Assignment Operators:

A Compound assignment operator combines an operator and an = sign.

 Example:

x +=3 is the same as x=x+3

= Assignment

+= Addition assignment

-= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Remainder assignment

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive or assignment

<<= Left-shift assignment

>>= Right-shift assignment

3.5.7: Misc

() Parenthesis grouping, function calls

[] Array indexing

. Dot operator

Used with structs and arrays. Examples follow.

Allows access to members of a struct.
Example:

struct gains

end struct

int cp

int ci

gains.cp

This 'allows' access
to members of the
struct above

Used with arrays to gain access to element size.
Example:

int x [3]

x.size

This 'allows' access
to the size of the
array above

CPL User Guide Language Basics

Copley Controls 27

3.5.8: Operator Precedence

Operators with higher precedence are executed first. Two or more operators with the same
precedence get evaluated in the order shown below.

Order of
evaluation

Operators in order of precedence

Left to right () [] .

Right to left ++ -- - ~ ! (

Left to right * / %

Left to right + -

Left to right << >> >>>

Left to right < > <= >=

Left to right == !=

Left to right &

Left to right ^

Left to right |

Left to right &&

Left to right ||

Right = += -= *= /= %= &= ^= |= <<= >>= >>>=

Language Basics CPL User Guide

28 Copley Controls

3.6: Expressions, Statements and Blocks
The following defines expressions, statements, and blocks.

3.6.1: Expressions

An expression is made up of one or more operators, variables, literals and/or one or more function
calls which, when run, evaluates to a single value.

For example:

X + 1 / 4

3.6.2: Statements

Statements are one or more expressions, function calls, or declarations that complete a task.

Statements are made up of one or more of the following:

• Assignment (see

• Unary operator

• Function call

• Variable Declaration

• Control flow

Control flow statements are used to regulate the order in which statements are executed.
A statement can span multiple lines using an underscore at the end of the line. However, the
underscore may not split variables or numbers. For example, the number 100 cannot be split
between two lines. There is no limit to expression or line length. However, there can be only one
statement per line. To terminate a line use carriage return, line feed, or carriage return/line feed.

3.6.3: Blocks

Blocks are zero or more statements within a function or control flow statement; essentially a
section of code grouped together. A block begins after the start of the function or control flow
statement, and ends with the corresponding end statement. Blocks may also be nested within
other blocks, as in the example below.

main()

end main

while(expression)

end while

Main block

While block

CPL User Guide Language Basics

Copley Controls 29

3.7: Program Control Flow Statements
Control flow statements allow a program to loop or branch. There are the six available control flow
statements:

• While loop

• For loop

• if-else

• switch

• break

• continue

Details for each control flow statement follow.

3.7.1: While Loop

A while loop executes a block of code repeatedly as long as a condition is met (expression does
not evaluate to zero).

The syntax for a while loop is:

while(expression)

end while

while block

The following numbered list describes what happens in the diagram above:

1. While loop is entered.

2. Expression evaluated.

• If it evaluates to a non-zero number, the block is executed. Expression evaluation
and block execution are repeated as long as the expression evaluates to a non-
zero number.

• If the expression evaluates to zero the block is skipped, the end while terminates

the while loop, and the code immediately following the end while is read.

Here is an example of a while loop:

// increment x while its value is between y and z

while ((x > y) && (x < z))

 x += 1

end while

Language Basics CPL User Guide

30 Copley Controls

3.7.2: For Loop

Typically, a for loop is used to repeat a block of code a specific number of times. The flexibility of a
for loop allows it to be used to execute a block of code repeatedly while a condition is being met,
similar to a while loop.

The syntax for a for loop is:

for(declaration;expression;iterator)

end for

for block

 The following numbered list describes what happens in the diagram above:

1. For loop is entered.

2. Declaration is executed (this happens only once).

3. Expression evaluated.

If it evaluates to a non-zero number, the block is executed. Move to step 4 below.

If it evaluates to zero the for loop is exited and the code immediately following the
end for is read.

4. Iterator is executed (if there is one). If there is no iterator step 3 and 4 are
repeated.

Expression evaluation, block execution and iterator execution (if there is one) are
repeated as long as the expression evaluates to a non zero number.

Note that the declaration, expression, and iterator are all optional. However, the parentheses,
along with the two semicolons are required. If there is no declaration, expression or iterator an
infinite loop will result.

Here is an example of a for loop:

// calculate average of values in an array

sum = 0

for (int x = 0; x < myArray.size; x++)

 sum += myArray[x]

end for

sum /= myArray

CPL User Guide Language Basics

Copley Controls 31

3.7.3: If Statement

An if statement is used for branching. A single block of code will be executed if its expression
evaluates to a non zero number. An if statement has three components: if (with an expression),

elsif (with an expression) and else. else and elesif are optional. Multiple elseifs may be

used. An if statement is useful if two or more acceptable conditions are possible.

The syntax for an if statement is:

if(expression)

elseif(expression)

if block

else

end if

elseif block

else block

 The following numbered list describes what happens in the diagram above:

1. If statement is entered.

2. Expression in the if statement is evaluated. If it evaluates to a non-zero number,
block a is executed the line of code immediately following the end if is read.

3. If the expression in the if statement evaluates to zero, the expression in the elseif

statement is evaluated. If the expression in the elseif statement evaluates to a

non-zero number, block b is executed and the line of code immediately following
the end if is read.

If the expression in the elseif statement evaluates to zero, block c is executed,

and the line of code immediately following the end if is read.

Here is an example of an if - elseif - else statement:

// if x is negative set y to -1, else if x = 0

// set y to 0, otherwise set y to 1

if (x < 0)

 y = -1

elseif (x == 0)

 y = 0

else

 y = 1

end if

3.7.4:

Language Basics CPL User Guide

32 Copley Controls

Switch Statement

A switch statement is similar to an if statement in that it allows branching to different blocks of code
that match the expression. If the case value equals what the expression evaluates to, that case’s
block is executed. Program execution will continue to the next case or default block, unless a
break, or return is encountered.

When a break is encountered, the switch statement is exited, and the line of code immediately

following the end switch is read. return causes a return to the calling function, in this case, the

beginning of the switch statement. The default block is optional. If default is provided, and none

of the case values match the value of the expression, the default block will be executed. Duplicate
case values are not allowed. Case values must be constants or literals.

The syntax for a switch statement is:

switch(expression)

case 0

case 1

case 2

case 3

end switch

block

block

default

block

Here is an example of a switch statement with break statements inserted:

// Call appropriate function to set up limits

// based on the mode variable

switch (mode)

 case 1:

 InitPositionLimits()

 break

 case 2:

 case 3:

 InitVelocityLimits()

 break

 default:

 InitCurrentLimits()

end switch

One or more case statements may be grouped to a single block as in the diagram above.

CPL User Guide Language Basics

Copley Controls 33

3.7.5: Break

A break statement terminates the closest enclosing loop or switch statement. break can be used

in for, while and switch statements.

Here is an example of break used in a for statement:

// search an array for the first zero value and

// save the index of the array where it is found

foundIndex = -1

for (int x = 0; x < myArray.size; x++)

 if (myArray[x] == 0)

 found = x

 break

 end if

end for

3.7.6: Continue

A continue statement passes control to the next iteration of the enclosing loop. continue can be

used in for and while statements.
Here is an example of continue being used in a for statement:

// add up only the positive numbers in an array

sum = 0

for (int x = 0; x < myArray.size; x++)

 /*

 If the array element contains a negative

 number, then pass control to the next

 iteration of the loop without executing the

 code after the end if

 */

 (myArray[x] < 0)

 continue

 end if

 sum += myArray[x]

end for

Language Basics CPL User Guide

34 Copley Controls

3.8: Functions
Functions allow a program to be broken down into small well defined tasks. They are helpful in
allowing the reuse of code that is used often in a program.

The syntax for a function is:

function returnType name (parameter)

end if

if (expression)

end function

short, int, float or void optional

block

Functions have the option of returning values. They may also take parameters as input.
Parameters may be primitive data types or derived data types. However, each is passed to a
function differently: Primitive data types are passed by value; derived types are passed by
reference.

3.8.1: Passing by Value

When a primitive data type is passed to a function, it is passed by value, meaning a copy of the
original data is made and the copy is passed to the function. If the function changes the value, it is
really changing the copy, not the original data. When the function returns, the copy is discarded
and any changes are lost, but the original data is preserved.

3.8.2: Passing by Reference

When a derived data type is passed to a function, it is passed by reference, meaning an address
of the data is passed to the function, not the data itself. If a function changes the data, the original
data is changed, because it uses the address of the original data. When the function returns, the
changes that the function made to the data are preserved.

3.8.3: Return Type

The returntype in a function can be short, ushort, int, uint, float or void. A return type of

void means that a function does not return a value. Arrays and structs are not allowed as return
types. However, an array or struct may be returned by passing it in as an argument and letting the
function change its value. This is possible because arrays and structs are passed by reference as
described above.

3.8.4: Function Name

A function name may be any valid variable name and is typically named for what it does.

CPL User Guide Language Basics

Copley Controls 35

3.8.5: Parameter List

The optional parameter list is defined using valid variable declarations separated by commas.

(int x, float y, struct MoveLimits limits)

If the function does not take any parameters, then an empty set of parenthesis is used.

function void CheckStatus()

end function

• Note: Initializing a variable in the parameter list is not allowed.

Arrays are declared without specifying the array size. The caller is responsible for declaring the
array before the function is called.

(int[] velocities)

To prevent a function from modifying an array or struct, use the const modifier when declaring it in
the parameter list.

(const int[] velocities)

(const struct MoveLimits limits)

3.8.6: Return Statement

The return statement is used to exit the function. If the function declaration specifies that a value
is to be returned, then an expression must follow the return statement. If the return type is void,
then the return statement is optional.

Examples:

function void StartMove(struct MoveLimits limits)

 //function body

 // no return statement needed

end function

function int GetMaxValue(int x, int y)

if (x > y)

 return x

 else

 return y

end function

Language Basics CPL User Guide

36 Copley Controls

3.8.7: Calling Functions

A function can be called from anywhere in the program (main or other functions) as long as it is
defined. A function is called by:

1. Optionally assigning a variable if the function returns a value.

2. Using the function name.

3. Providing the arguments to the parameter list, each separated by a comma. The
data type of each argument must match the type in the function definition.

Example:

// function definition

function int GetMaxValue(int x, int y)

end function

// function call

int maxValue = GetMaxValue(a, b)

Copley Controls 37

CHAPTER
4: SYSTEM FUNCTIONS

This chapter has a list of CPL system functions and detailed definitions of each.
Title Page
4.1: System Functions ... 38

4.1.1: Motion .. 38
4.1.2: Wait.. 38
4.1.3: Status... 38
4.1.4: Math ... 39
4.1.5: Miscellaneous .. 39

4.2: Definitions ... 40
Miscellaneous .. 48

System Functions CPL User Guide

38 Copley Controls

4.1: System Functions

4.1.1: Motion

Title Definitions

Move p. 40

VelMovePosMode p. 40

VelMoveVelMode p. 41

CurrentMove p. 41

Home p. 41

Halt p. 41

TrajUpdate p. 42

4.1.2: Wait

Title Definitions

Wait p. 42

WaitMoveDone p. 42

WaitForEvent p. 43

WaitForInput p. 43

WaitForActualPosition p. 44

WaitForLimitedPosition p. 44

WaitForVelocity p. 45

WaitForVelocityTraj p. 45

WairForCurrent p. 45

• Note: Wait function calls are ‘blocking. Meaning they won’t return from the function
call until either the condition has been met or the time out has expired.

4.1.3: Status

Title Definitions

GetFaults p. 46

ClearFaults p. 46

GetEvents p. 46

GetStickyEvents p. 46

GetLatchedEvents p. 46

GetTrajStatus p. 47

CPL User Guide System Functions

Copley Controls 39

4.1.4: Math

Title Definitions

SQRT p. 47

LOG p. 47

EXP p. 47

POW p. 47

SIN p. 47

COS p. 47

TAN p. 47

ASIN p. 47

ACOS p. 47

ATAN p. 47

ATAN2 p. 47

FLOOR p. 48

CEILING p. 48

ABS p. 48

4.1.5: Miscellaneous

Title Definitions

SetParameter16 p. 48

GetParameter16 p. 48

SetParameter32 p. 49

GetParameter32 p. 49

SetParameterExt p. 49

GetParameterExt p. 49

SetElecGearRatio p. 50

ReadInputs p. 50

SetOutput p. 50

GetSaveRegs p. 50

SetCANObj16 p. 50

GetCANObj16 p. 51

SetCANObj32 p. 51

GetCANObj32 p. 51

System Functions CPL User Guide

40 Copley Controls

4.2: Definitions

Motion

int Move(int distance, int axis=0)

Description Start a move in position mode.

Note: This function only works for a single axis. To start a move on
more than one axis at the same time (multi-axis drives only), first set up
the commanded position (parameter 0xCA), then call the TrajUpdate
system function.

Pre-condition The desired state (parameter 0x24) must be set to 21 (for servo mode)
or 31 (in stepper mode). Drive must be hardware enabled. No faults
present. The trajectory profile mode parameter, 0xC8, needs to be
configured properly for the move type.

Parameters distance:

Relative: Number of counts to move from current position

Absolute: Abosolute position in counts

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, error = 1

int VelMovePosMode(int velocity, int direction, int axis=0)

Description Start a velocity move using the trajectory generator in the position loop.

Pre-condition The desired state (parameter 0x24) must be set to 21 (for servo mode)
or 31 (in stepper mode). Drive must be hardware enabled. No faults
present. The trajectory profile mode parameter, 0xC8, needs to be
configured properly for the move type.

Parameters velocity: Commanded velocity (0.1 counts/s). Positive values only.

direction: Direction of motion.

1 = Positive

-1 = Negative

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, error = 1

CPL User Guide System Functions

Copley Controls 41

int VelMoveVelMode (int velocity, int axis=0)

Description Start a velocity move using programmed velocity in the velocity loop.

Pre-condition The desired state (parameter 0x24) must be set to11. Drive must be
hardware enabled. No faults present.

Note: When setting desired state to 11 and commanded velocity is not 0,
motion may occur.

Parameters velocity: Commanded velocity (0.1 counts/s).

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, error = 1

int CurrentMove(int current, int currentRamp, int axis=0)

Description Start a current move using programmed current mode.

Pre-condition The desired state (parameter 0x24) must be set to 1. Drive must be
hardware enabled. No faults present.

Note: When setting desired state to 1 and commanded current is not 0,
motion may occur.

Parameters current: Commanded current (0.01 A).

currentRamp: Rate at which the current will change to its commanded
value (mA/s). If this parameter is 0, no motion will occur.

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, error = 1

int Home(int axis=0)

Description Starts the homing sequence.

Pre-condition The homing method configuration (parameter 0xC2) must be configured
for the appropriate homing type. The desired state (0x24) must be set to
a position mode, either servo or stepper.

Parameters axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, error = 1

int Halt(int axis=0)

Description Abort the move in progress.

Note: This command only works in position mode.

Pre-condition None

Parameters axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, error = 1

System Functions CPL User Guide

42 Copley Controls

int TrajUpdate(int axis)

Description Update the trajectory generator. If a move is in progress, the trajectory
parameters will be updated. If no move is in progress, a new move is
started.

Note: This command only works in position mode.

Pre-condition All of the trajectory parameters (velocity, accel., etc) must be set up prior
to calling this function.

Parameters axis: A bit-mapped value that indicates which axis or axes the command
is to be applied. Bit 0 for axis A, bit 1 for axis B. If no bits are set, then
the command will be applied to axis A. This parameter is required.

Return value OK = 0, error = 1

Wait

int Wait(int time)

Description Wait for a fixed period of time.

Pre-condition None

Parameters time: Time to wait (ms). A negative value means wait forever.

Return value OK = 0

Note: Wait function calls are ‘blocking. Meaning they won’t return from the function call until
either the condition has been met or the time out has expired.

int WaitMoveDone(int timeout, int axis=0)

Description Wait for the move to be done. Note: The move must be started before
this command.

Pre-condition None

Parameters timeout: Maximum time to wait (ms). A negative value means wait
forever.

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, timeout = 2

Note: Wait function calls are ‘blocking. Meaning they won’t return from the function call until
either the condition has been met or the time out has expired.

CPL User Guide System Functions

Copley Controls 43

int WaitForEvent(int mask, int condition, int timeout, int axis=0)

Description Wait for an event to occur.

Pre-condition None

Parameters mask: Represents the bits in the event status parameter(0xA0.

condition: The condition that triggers the wait to exit

0 = All the bits set.

1 = Any of the bits set.

2 = All of the bits clear.

3 = Any of the bits clear.

timeout: Maximum time to wait (ms). A negative value means wait
forever.

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, timeout = 2

Note: Wait function calls are ‘blocking. Meaning they won’t return from the function call until
either the condition has been met or the time out has expired.

int WaitForInput(int inputNumber, int condition, int timeout)

Description Wait for an input condition to be met.

Pre-condition None

Parameters inputNumber: The input to wait on (IN1, IN2, etc.).

condition: The state of the input that will trigger the Wait to exit:

0 = Low level.

1 = Falling edge.

2 = High level.

3 = Rising edge.

timeout: Maximum time to wait (ms). A negative value means wait
forever.

Return value OK = 0, timeout = 2

Note: Wait function calls are ‘blocking. Meaning they won’t return from the function call until
either the condition has been met or the time out has expired.

System Functions CPL User Guide

44 Copley Controls

int WaitForActualPosition(int position, int condition, int timeout, int axis=0)

Description Wait for the actual position to meet the specified condition.

Pre-condition None

Parameters position: The actual position to wait for (counts).

condition: The condition that triggers the wait to exit.

0 = Greater than or equal to the specified position.

1 = Less than or equal to the specified position.

timeout: Maximum time to wait (ms). A negative value means wait
forever.

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, timeout = 2

Note: Wait function calls are ‘blocking. Meaning they won’t return from the function call until
either the condition has been met or the time out has expired.

int WaitForLimitedPosition(int position, int condition, int timeout, int axis=0)

Description Wait for the limited position to meet the specified condition.

This function is typically used for stepper motors operated in open-loop
stepper mode.

Pre-condition None

Parameters position: The input limited position to wait for (counts).

condition: The condition that triggers the wait to exit.

0 = Greater than or equal to the specified position.

1 = Less than or equal to the specified position.

timeout: Maximum time to wait (ms). A negative value means wait
forever.

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, timeout = 2

Note: Wait function calls are ‘blocking. Meaning they won’t return from the function call until
either the condition has been met or the time out has expired.

CPL User Guide System Functions

Copley Controls 45

int WaitForVelocity(int velocity, int condition, int timeout, int axis=0)

Description Wait for the actual velocity.

Pre-condition

Parameters velocity: The actual velocity to wait for (.1 counts per second).

condition: The condition that triggers the wait to exit.

0 = Greater than or equal to the specified velocity.

1 = Less than or equal to the specified velocity.

timeout: Maximum time to wait (ms). A negative value means wait
forever.

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, timeout = 2

int WaitForVelocityTraj(int velocity, int condition, int timeout, int axis=0)

Description Wait for the trajectory velocity.

Pre-condition

Parameters velocity: The trajectory velocity to wait for (0.1 counts per second).

condition: The condition that triggers the wait to exit.

0 = Greater than or equal to the specified trajectory velocity.

1 = Less than or equal to the specified trajectory velocity.

timeout: Maximum time to wait (ms). A negative value means wait
forever.

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, timeout = 2

int WaitForCurrent(int current, int condition, int timeout, int axis=0)

Description Wait for actual current.

Pre-condition None

Parameters current: Actual current to wait for (0.01 A).

condition: The condition that triggers the wait to exit.

0 = Greater than or equal to the specified trajectory current.

1 = Less than or equal to the specified trajectory current.

timeout: Maximum time to wait (ms). A negative value means wait
forever.

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value OK = 0, timeout = 2

System Functions CPL User Guide

46 Copley Controls

Status

int GetFaults(int axis=0)

Description Reads the Latching Fault Status register (0xA4) which contains any
active latched faults.

Pre-condition None

Parameters axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value The value of parameter 0xA4

void ClearFaults(int axis=0)

Description Clears any latched faults.

Pre-condition None

Parameters axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value N/A

int GetEvents(int axis=0)

Description Reads the Event Status Register (0xA0).

Pre-condition None

Parameters axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value The value of parameter 0xA0

int GetStickyEvents(int axis=0)

Description Reads the Sticky Event Status register (0xAC).

Pre-condition None

Parameters axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value The value of parameter 0xAC

int GetLatchedEvents(int axis=0)

Description Reads the Latched Event Status register (0xA1).

Pre-condition None

Parameters axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value The value of parameter 0xA1

CPL User Guide System Functions

Copley Controls 47

int GetTrajStatus(int axis=0)

Description Reads the Trajectory Status register (0xC9).

Pre-condition None

Parameters axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value The value of parameter 0xC9

Math

float SQRT(float a)

Description Calculates the square root of the input parameter.

float LOG(float a)

Description Calculates the natural log of the input parameter.

float EXP(float a)

Description Calculates e raised to the power of the input parameter.

float POW(float a, float b)

Description Calculates a raised to the b power.

float SIN(float a)

Description Calculates the sine (in radians) of the input parameter.

float COS(float a)

Description Calculates the cosine (in radians) of the input parameter.

float TAN(float a)

Description Calculates the tangent (in radians) of the input parameter.

float ASIN(float a)

Description Calculates the arc sine (in radians) of the input parameter.

float ACOS(float a)

Description Calculates the arc cosine (in radians) of the input parameter.

float ATAN(float a)

Description Calculates the arc tangent (in radians) of the input parameter.

float ATAN2(float a, float b)

Description Calculates the arc tangent (in radians) of the quotient of a and b.

System Functions CPL User Guide

48 Copley Controls

float FLOOR(float a)

Description Calculates the largest (closest to positive infinity) value that is less than
or equal to the input parameter.

float CEILING(float a)

Description Calculates the smallest (closest to negative infinity) value that is greater
than or equal to the input parameter.

float ABS(float a)

Description Calculates the absolute value of the input parameter.

Miscellaneous

int SetParameter16(int paramId, short newValue, int bank, int axis=0)

Description Set the value of a parameter in the drive.

Pre-condition None

Parameters paramId: The ID of the parameter (see Copley Controls’ Parameter
Dictionary for details).

newValue: The new value for the parameter

axis: Which axis the command is to be (default is axis A). Parameter is
optional.

Bank: RAM=0 Flash=1

Return value OK = 0, error = 1

Short GetParameter16 (int paramId, int bank, int axis=0)

Description Get the value of a parameter from the drive.

Pre-condition None

Parameters paramId: The ID of the parameter (see Parameter Dictionary for details).

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Bank: RAM=0 Flash=1

Return value Returns the value of the specified parameter.

CPL User Guide System Functions

Copley Controls 49

int SetParameter32(int paramId, int newValue, int bank, int axis=0)

Description Set the value of a parameter in the drive.

Pre-condition None

Parameters paramId: The ID of the parameter (see Parameter Dictionary for details).

newValue: The new value for the parameter

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Bank: RAM=0 Flash=1

Return value OK = 0, error = 1

int GetParameter32(int paramId, int bank, int axis=0)

Description Get the value of a parameter from the drive.

Pre-condition None

Parameters paramId: The ID of the parameter (see Parameter Dictionary for details).

Bank: RAM=0 Flash=1

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Return value Returns the value of the specified parameter.

int SetParameterExt(int paramId, short [] newValues, int bank, int axis=0)

Description Set a multi-word parameter in the drive. This is used for parameters that
take more than two words of data.

Pre-condition None

Parameters paramId: The ID of the parameter (see Parameter Dictionary for details).

newValues: An array of type short .

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Bank: RAM=0 Flash=1

Return value OK = 0, error = 1

int GetParameterExt (int paramId, short [] paramValue, int bank, int axis=0)

Description Get a multi-word parameter in the drive. This is used for parameters that
take more than two words of data.

Pre-condition None

Parameters paramId: The ID of the parameter (see Parameter Dictionary for details).

axis: Which axis the command is to be applied (default is axis A).
Parameter is optional.

Bank: RAM=0 Flash=1

paramValue: The value of the specified parameter will be returned here.

Return value OK = 0, error = 1

System Functions CPL User Guide

50 Copley Controls

int SetElecGearRatio(int inputPulses, int outputCounts, int axis=0)

Description Sets electronic gear ratio.

Pre-condition None

Parameters inputPulses: Number of Input Pulses required to produce output counts.

outputCounts: Number of Output Counts per given number of input
pulses.

axis: Which axis the command is to be applied (defaulted to axis A).
Parameter is optional.

Return value OK = 0, error = 1

int ReadInputs(int inputMask)

Description Reads the 32-bit version of the Input Line State Parameter (0x15C)

Pre-condition None

Parameters A bit mapped integer that indicates which input or inputs are to be read.
When a bit is set, the state of the corresponding input will be returned.
IN1 corresponds to bit 0, IN2 corresponds to bit 1, etc.

Return value The state of the inputs specified in the inputMask parameter. The value
of IN1 is returned in bit0 (1 if input is hi, 0 if input is low), IN2 in bit 1, etc.

int SetOutput(int outputNumber, int state)

Description Sets an output to the active/inactive state.

Pre-condition Output must be set to manual mode using the SetOutputConfig system
function.

Parameters outputNumber: The output number to control.

state: 1 = active, 0 = inactive

Return value OK = 0, error = 1

int SaveGetRegs(int operation, int registerNumber)

Description This function will save a program register to flash, or restore a program
register from flash.

Pre-condition None

Parameters operation: 1 = save, 0 = restore

registerNumber: the number register to save/restore. Valid inputs are 0-
32.

Note: Passing 32 as the registerNumber will save or restore all registers.

Return value OK = 0, error = 1

int SetCANObj16(int objID, int newValue, int subIndex, int axis)

Description This function sets a CAN object value. See the CANopen Programmers
Manual for a list of CAN objects.

Pre-condition None

CPL User Guide System Functions

Copley Controls 51

Parameters objID: ID number of the CAN object

newValue: The new value the CAN object will be set to

subIndex: The sub-index of the CAN object

axis: Which axis the command is to be applied (defaulted to axis A).
Parameter is optional.

Return value OK = 0, error = 1

int GetCANObj16(int objID, int subIndex, int axis)

Description This function gets a CAN object value. See the CANopen Programmers
Manual for a list of CAN objects.

Pre-condition None

Parameters objID: ID number of the CAN object

subIndex: The sub-index of the CAN object

axis: Which axis the command is to be applied (defaulted to axis A).
Parameter is optional.

Return value Value of the CAN object

int SetCANObj32(int objID, int newValue, int subIndex, int axis)

Description This function sets a CAN object value. See the CANopen Programmers
Manual for a list of CAN objects.

Pre-condition None

Parameters objID: ID number of the CAN object

newValue: The new value the CAN object will be set to

subIndex: The sub-index of the CAN object

axis: Which axis the command is to be applied (defaulted to axis A).
Parameter is optional.

Return value OK = 0, error = 1

int GetCANObj32(int objID, int subIndex, int axis)

Description This function sets a CAN object value. See the CANopen Programmers
Manual for a list of CAN objects.

Pre-condition None

Parameters objID: ID number of the CAN object

subIndex: The sub-index of the CAN object

axis: Which axis the command is to be applied (defaulted to axis A).
Parameter is optional.

Return value Value of the CAN object

Copley Controls 52

CHAPTER
5: INTERRUPTS

This chapter describes Interrupts and their usage.

Topics include the following:

5.1: Introduction ... 53
5.2: Interrupt Types .. 54

5.2.1: interrupt_1: program exception .. 54
5.2.2: interrupt_2: rising edge of digital inputs ... 54
5.2.3: interrupt_3: falling edge of digital inputs .. 54
5.2.4: interrupt_4: events status for axis 1 ... 54
5.2.5: interrupt_5: events status for axis 2 ... 54
5.2.6: interrupt_6: events status for axis 3 ... 54
5.2.7: interrupt_7: events status for axis 4 ... 54

5.3: Interrupt Handler Routines .. 55
5.3.1: Adding the Interrupt ... 55
5.3.2: i_return ... 55

5.4: Global Enable/Disable Interrupts .. 56
5.5: Interrupt Status ... 56

CPL User Guide Interrupts

Copley Controls 53

5.1: Introduction
Interrupts are used to handle asynchronous events. When an interrupt occurs, the virtual machine
first finishes executing the current instruction, then calls the interrupt routine. When the interrupt
routine is finished, the code resumes from where it left off. If an interrupt occurs while another is
being handled, the most recent will be handled upon the exit of the current interrupt handle

All interrupts are disabled by default. To be active they must be enabled within the CPL program
using the GlobalEnableInterrupts() call (see Global Enable/Disable Interrupts, p. 56).

Individual interrupts are enabled by implementing the interrupt handler routine (see Interrupt
Handler Routines, p. 55).

A mask determines what bit/s will trigger an interrupt. The mask is defined by the interrupt type
(see Interrupt Types, p. 54). All interrupts are edge triggered.

Interrupts CPL User Guide

54 Copley Controls

5.2: Interrupt Types
Each interrupt has a pre-defined function.

5.2.1: interrupt_1: program exception

interrupt_1 is triggered by program exceptions. The interrupt mask defines which program
exceptions will cause an interrupt. Exceptions are serious conditions that may cause unexpected
program operation. It is highly recommended that interrupt_1 be implemented so that proper action
can be taken if one of these exceptions occurs for your specific application. The following program
exceptions are currently used:

Bit Definition

0 Attempt to read/write an illegal address (stack overflow will generate this).

1 Attempt to write to a read only memory location.

2 Divide by zero.

3 Illegal op-code processed.

4-31 Reserved for future use.

5.2.2: interrupt_2: rising edge of digital inputs

interrupt_2 is triggered by the rising edge of a digital input. The interrupt mask defines which
input/s will cause the interrupt to occur. Bit 0 for input 0, bit 1 for input 1, etc. For example: an
interrupt mask of 0x70 corresponds to inputs 4, 5, and 6.

5.2.3: interrupt_3: falling edge of digital inputs

interrupt_3 is be triggered by the falling edge of a digital input. The interrupt mask defines which
bits will cause the interrupt. Bit 0 for bit 1, bit 1 for bit 2, etc.

5.2.4: interrupt_4: events status for axis 1

interrupt_4 is triggered by the events status for axis 1. interrupt_4 is generated on the rising edge
of enabled events status bits. The interrupt mask defines which input/s will cause the interrupt. For
example: an interrupt mask of 0x180 corresponds to current output limited and voltage output
limited events status bits.

Refer to CME2 User Guide for events status parameter.

5.2.5: interrupt_5: events status for axis 2

interrupt_5 is triggered by the events status for axis 2. The interrupt mask defines which bits will
cause the interrupt. Interrrupt_5 is generated on the rising edge of enabled events status bits. It
can be used only in multi-axis drives.

5.2.6: interrupt_6: events status for axis 3

interrupt_6 is triggered by the events status for axis 3. The interrupt mask defines which bits will
cause the interrupt. Interrrupt_6 is generated on the rising edge of enabled events status bits. It
can be used only in multi-axis drives.

5.2.7: interrupt_7: events status for axis 4

interrupt_7 is triggered by the events status for axis 4. The interrupt mask defines which bits will
cause the interrupt. Interrrupt_7 is generated on the rising edge of enabled events status bits. It
can be used only in multi-axis drives.

CPL User Guide Interrupts

Copley Controls 55

5.3: Interrupt Handler Routines

5.3.1: Adding the Interrupt

To enable an individual interrupt, an interrupt routine must be implemented. The syntax for the
interrupt routine is shown below.

interrupt_1 <interrupt mask>

 User code

end interrupt

5.3.2: i_return

An i_return statement is used to exit the interrupt handler routine. Interrupt routines do not return

any values.

interrupt_2 <0x06>

 if (expression)

 i_return

 end if

end interrupt

interrupt_1, 2, 3, 4, or 5

Interrupts CPL User Guide

56 Copley Controls

5.4: Global Enable/Disable Interrupts
When a CPL program starts all interrupts are disabled by default. To enable interrupts use the
GlobalEnableInterrupts() call. This will enable all interrupts. They can be disabled at any point

in the program by calling the GlobalDisableInterrupts() described below.

GlobalEnableInterrupts()

Description Enables the global interrupt.

Pre-condition Interrupt service routines must be defined.

GlobalDisableInterrupts()

Description Disables the global interrupt.

Pre-condition None

5.5: Interrupt Status
An ReadInterruptStatus()call may be used to view the bit/s that trigger an interrupt routine. An

integer value is returned.

Example:

interrupt_3 <0x0F>

 int triggerValue = ReadInterruptStatus()

 if(triggerValue == 1)

 SetOutput (1,0)

 end if

end interrupt

5.6: Good Practices

Interrupts should remain as short and simple as possible. If an interrupt is being used to execute
several lines of code it is recommended to use a flag.

Example:

main()

 int flag = 0

 while(1)

 if(flag)

 //if interrupt set flag, do some task here

 end if

 end while

end main

CPL User Guide Interrupts

Copley Controls 57

interrupt_2 <0x02>

 //on input 1 rising edge, set flag to do task

 flag = 1

end interrupt

If an interrupt function is configured to be triggered on more than one option bit, it is possible that
ReadInterruptStatus() will return more with more than one bit set. This happens in the case of
interrupts simultaneously occurring. The user should be aware of this and write their code as to
not miss a desired interrupt.

GOOD: In the case of inputs 0 and 1 triggering at the same time, triggerValue would be equal to
0x3, and we would set both outputs as desired by the user.

interrupt_2 <0x0F>

 int triggerValue = ReadInterruptStatus()

 if(triggerValue & 0x1)

 SetOutput (1,0)

 end if

 if(triggerValue & 0x2)

 SetOutput (1,1)

 end if

end interrupt

BAD: If inputs 0 and 1 rise at the same time and triggerValue returns a value of 3, only the case 1
will be executed.

interrupt_2 <0x0F>

 int triggerValue = ReadInterruptStatus()

 //if in0 and in1 are triggered simultaneously

 //set the output

 switch(triggerValue)

 case 1:

 SetOutput(0,1)

 break

 case 2:

 SetOutput(1,1)

 break

 end if

end interrupt

Interrupts CPL User Guide

58 Copley Controls

Copley Controls 59

CHAPTER
6: USING CPL INTEGRATED

DEVELOPMENT ENVIRONMENT (IDE)

Topics include the following:
Title Page
6.1: Quick Start Guide ... 60
6.2: Working with Projects ... 60

6.2.1: Create a New Project ... 61
6.2.2: Open Existing Projects .. 62
6.2.3: Adding Source Files to a Project ... 62
6.2.4: Deleting Source Files from a Project ... 63
6.2.5: Set Main Project .. 63
6.2.6: Close Project ... 64
6.2.7: Building Projects .. 64
6.2.8: Saving Program to Flash ... 64
6.2.9: Running a CPL Program .. 64
6.2.10: Debugging ... 64

6.3: CPL Interface Tour ... 65
6.3.1: Menu Bar ... 66
6.3.2: Toolbar ... 69
6.3.3: Editor ... 70
6.3.4: Other Windows .. 71

6.4: Using the Debugger .. 73
6.4.1: Overview .. 73
6.4.2: Breakpoints .. 73
6.4.3: Breakpoints Window .. 74
6.4.4: Variables Window .. 74
6.4.5: Starting Debugger .. 75
6.4.6: Program Execution .. 75

Using CPL IDE CPL User Guide

60 Copley Controls

6.1: Quick Start Guide
The following section is a step by step example of how to open, build and run a CPL program.

Note: It is assumed that the user is connected to a drive; the drive has been set up and tuned; and
all safety precautions are in place.

1 Open project:

Click the Open Projects button from the toolbar, then choose a project from the Open Project

dialog box, or select File→Open Project in the menu bar.

2 Clean and build

Click the Clean and Build Main Project button from the toolbar or select File→Open Project in
the menu bar.

3 Save to flash

Click the Save to Flash button from the toolbar or select Project→Save to Flash in the menu bar.

4 Run

Click the Run CVM Program button from the toolbar or select Run→Run CVM Program in the
menu bar.

6.2: Working with Projects
A project is a collection of source files, that will be built into a single CPL program, that will run on
the drive. The default location for CPL projects is My Documents\Copley Motions\CPL\Projects. In
the projects window a CPL project title will begin with the Copley icon.

The project tree, and all its associated source files, will show the projects tab as in the example
below.

Project node

Source file

CPL User Guide Using CPL IDE

Copley Controls 61

6.2.1: Create a New Project

When creating a new project there are two available types to choose from: CPL Project Template
and Empty CPL Project. The CPL Project Template creates a project with a source file that
contains a main function (main()). The Empty CPL Project creates an empty project with no

source file.

To create a new project open the New Project wizard by clicking the New Project button from the
Toolbar, then from the Projects screen choose a project type (Empty CPL Project or CPL Project

Template) and click Next.

Under Name and Location enter a Project Name and click Finish (The Project Location and

Project Folder may also be changed prior to clicking Finish).

Using CPL IDE CPL User Guide

62 Copley Controls

6.2.2: Open Existing Projects

To open an existing project click the Open Projects button from the toolbar, then choose a project

from the Open Project window, or select File→Open Project from the menu bar.

6.2.3: Adding Source Files to a Project

To add a source file to a project:

1 Highlight the project node by clicking on it. Then click the New File button from the toolbar, or

select File→New file from the menu bar. The New File wizard will be displayed.

2 In the New File wizard choose a file type from the File Types screen. The template file type will

create a file with a main() method. The empty CPL file creates and empty file. Click NEXT.

CPL User Guide Using CPL IDE

Copley Controls 63

3 Name the file to be added to the project. Click Finish.

4 To open a source file in the editor window double click on the file under the project node.

6.2.4: Deleting Source Files from a Project

To delete source files from a project first select the source file to be deleted from the Projects tree,

and then either select Edit→Delete from the menu bar, or right click the source file and choose

Delete.

6.2.5: Set Main Project

If multiple projects are open, one must be set as the Main Project. A Main Project node will have

bold text.

To set a main project right click on the project node from the Projects tree and choose Set as Main
Project.

Using CPL IDE CPL User Guide

64 Copley Controls

6.2.6: Close Project

To close a project right click on the project node from the Projects tree and choose Close or select

File→Close Project from the menu bar.

• Note: Closing a project removes the project from the projects tab but not form the
hard drive.

6.2.7: Building Projects

To build a project, first add source files to a project (see Adding Source Files to a Project, p. 62). If
multiple projects are open select one as the main project (See Set Main Project, p. 63). Then, click

the Clean and Build Main Project button from the toolbar or select Project→Clean and Build

Main Project in the menu bar.

6.2.8: Saving Program to Flash

To save a program to flash, first build a project (see, Building Projects p. 63). If multiple projects

are open select one as the main project (See Set Main Project, p. 63). Then, either click the Save

to Flash button from the toolbar or select Project→Save to Flash in menu bar.

6.2.9: Running a CPL Program

After the project has been built and saved to flash, either click the Run CVM Program button from

the toolbar or select Run→Run CVM Program in the menu bar.

• Note: When the program is running breakpoints will be ignored.

6.2.10: Debugging

To start debugging a program click the Debug CVM Program button from the toolbar or select

Debug→Debug CVM Program in the menu bar.

For detailed information on using the debugger please see Using the Debugger, p.73.

• Note: If there are no breakpoints set in the source code, starting the debugging
program is equal to pressing the run button; the program will run without stopping.

CPL User Guide Using CPL IDE

Copley Controls 65

6.3: CPL Interface Tour
Some CPL features are called out in the diagram below. Screen details vary depending on drive
model and mode selection (In the view below the CVM directory and Output debug windows are
immediately available but the Status window has been selected). Details follow in the chapter.

Menu bar

Status window

Toolbar

Editor
window

Projects
window

Program
registers
window

Using CPL IDE CPL User Guide

66 Copley Controls

6.3.1: Menu Bar

Name Selection Description

File New Project Opens a new project wizard and asks the
user to choose between a project template or
an empty project that contains no source
code. See Create a New Project, p. 61.

New File Opens a new file wizard and asks for a file
type, file name and location.

See Adding Source Files to a Project, p. 62.

Open Project Opens an existing project. See Open Existing
Projects, p. 62.

Open Recent Project Opens a recently opened project.

Close Project Closes the project.

Open File Opens an existing file.

Open Recent File Opens a recently opened file.

Save Saves a project.

Save As Saves a project using a different name or
destination.

Save All Saves all open files in the editor.

Page setup Adjusts page margins, layout, headers, etc.

Print Prints the open file in the Editor window.

Print to HTML Saves the open file in the Editor window as
an HTML file. Optionally opens in browser.

Exit Exits CPL IDE.

Edit Undo

 Redo

 Cut

 Copy

 Paste

 Paste Formatted

 Delete

 Select All

 Select Identifier

 Find Selection

 Find Next

 Find Previous

 Find

 Replace

 Find in Projects

 Replace in Projects

 Start Macro Recording

 Stop Macro Recording

CPL User Guide Using CPL IDE

Copley Controls 67

View Show Line Numbers

Show Diff Sidebar

Full Screen

Navigate Go To Previous Document

Last edition Location

Back

Forward

Go To Line

Toggle Bookmark

Next Bookmark

Previous Bookmark

Next Error

Previous Error

Select in Projects

Select in files

Source Format

Remove Trailing Spaces

Shift Left

Shift Right

Move Up

Move Down

Duplicate Up

Duplicate Down

Toggle Comment

Insert Next Matching Word

Insert Previous Matching Word

Scan for External Changes

Project Clean and Build Main Project Clears existing build files, then compiles and
builds the main project.

Save to Flash Saves the compiled code to flash memory.

Using CPL IDE CPL User Guide

68 Copley Controls

Run Run CVM Program Starts CPL Program execution.

CAUTION: Depending on setup configuration
and input line state, motion could start
immediately.

Stop CVM Program Stops CPL Program execution.

CAUTION: Any programmed moves in
progress will continue until finished.

Enable CVM Program on Startup Configures the CPL Program to auto start
when the amplifier is powered up or reset.

This choice is the default setting.

Disable CVM Program on Startup Disables auto start of the CPL Program.

Debug Debug CVM Program Starts the debugger.

Tools Clear CVM Flash Deletes all files in the CVM Flash memory,
including CVM programs, Cam tables, and
gain scheduling tables.

Communications Wizard Opens the communications setup wizard.

Options

Window Status Opens a status window.

Cvm Directory Opens a CVM Directory window.

Program Registers Opens a Program Registers window.

Projects Opens a Projects window.

Files Opens a Files window.

Output Opens the following submenu:

 Output

 Search Results

Debugging Opens the following submenu:

 Variables

 Breakpoints

 Internal Registers

 Memory Viewer

Editor Opens an Editor window.

Close Window Closes highlighted window.

Maximize window Maximizes highlighted window.

Undock Window Undocks highlighted window from main
window.

Clone Document

Close All Documents

Close Other Documents

Documents…

Reset Windows

CPL User Guide Using CPL IDE

Copley Controls 69

Help CPL User Guide Opens this manual.

CPL Quick Guide Open the CPL Quick Reference Guide.

All Documents Opens the Doc folder in the CPL installation
folder. This folder contains all of the related
documents that were installed with CPL.

Downloads Web Page Opens default web browser with pages from
Copley Controls’ website.

Software Web Page

View Release Notes Opens latest CPL release notes in a text
viewer.

About Displays CPL version information.

6.3.2: Toolbar

Icon Name Description

New File Creates a new file.

New Project Creates a new project.

Open Project Opens an existing project.

Save all files Saves open files.

Undo Undo last edit.

Redo Redo last edit.

Clean and Build Clears existing build file, then compiles and

builds the code from the selected project.

Save to Flash Saves the compiled code to flash memory.

Run CVM Program Starts CPL Program execution.

 Stop CVM Program Stops CPL Program execution.

Debug CVM Program

Starts a debugger session and displays the
debugger toolbar buttons.

 Finish

Debugger
Session

Stops the debugger session.

Continue Re-starts or continues the debugger
session.

Step Over Executes one line of source code at a time.

The entire function will be executed in one
step.

Step Into Executes one line of source code at a time.
A function call will be stepped into.

Using CPL IDE CPL User Guide

70 Copley Controls

6.3.3: Editor

The Editor window displays program source code.

 Icon Name

 Last Edit

Find Selection

 Find Previous Occurrence

 Find Next Occurrence

 Toggle Highlight Search

 Previous Bookmark

Next Bookmark

Toggle Bookmark

 Shift Line Left

 Shift Line Right

Start Macro Recording

Stop Macro Recording

CPL User Guide Using CPL IDE

Copley Controls 71

6.3.4: Other Windows

Status

The status window describes the present amplifier, communications and CVM program status. In
the following window there is no communications device connected, the CVM program is not
running, and there is no amplifier connected.

In this window a communications device is connected, the CVM program is not running, and
amplifier info is shown.

Output

The output window displays all messages related to actions taken in the IDE. The Debug tab
displays the messages during a debugging session, such as a breakpoint being hit. The Console
tab displays all other messages.

Using CPL IDE CPL User Guide

72 Copley Controls

Program Registers

The program registers window displays the current values of CPL’s 32 Program registers (R0-
R31). Individual register values can be changed manually within the window.

CVM Directory

The CVM directory window displays all the files that have been stored in CVM flash memory.
Displayed files include CAM tables and gain scheduling.

To enter new files from the CVM flash memory select the refresh icon in the CVM directory
window.

The file number is listed under the ID column. Any file that is set to run on startup will have an
asterisk under the Startup column. The size column lists the number of words in the file and the

name of the file is listed under the Name column. CPL programs have the name _CPL0.

CPL User Guide Using CPL IDE

Copley Controls 73

6.4: Using the Debugger

6.4.1: Overview

The Debugger allows the testing of a CPL program by inspecting variables, and by stepping
through the program one line at a time

6.4.2: Breakpoints

Breakpoints are used to stop execution of a program at a specific line of code. When a breakpoint
is reached, actions such as viewing variables or stepping through the program line by line can be
performed. A maximum of seven breakpoints can be set. The breakpoints should be set prior to
starting a debugging session.

Setting/Clearing Breakpoints:

To set a breakpoint, first clean and build the project, then click on the line number on the left

margin of the editor. The line will be highlighted in pink and the breakpoint icon will be placed
over the line number. To clear the breakpoint, click on the breakpoint icon in the left margin of the
editor.

When the program stops at a breakpoint, the line will be highlighted in green and the icon will

change to a breakpoint with the program counter . The program counter indicates the next line
of code to be executed.

Using CPL IDE CPL User Guide

74 Copley Controls

6.4.3: Breakpoints Window

The Breakpoints window displays a list of the breakpoints that have been set. The file name and
line number is displayed for each breakpoint. This window is automatically opened when the

debugger is started. It may also be opened by selecting Window→Debugging→Breakpoints
from the menu bar.

6.4.4: Variables Window

The Variables Window is used to inspect the value of variables while debugging. The values are
only valid when the CPL program is either stopped at a breakpoint, or while single-stepping.

Global variables are always displayed. Local variables are only displayed if they are in
scope (see Visibility of variables, p 19). Constants will not be displayed in the Variables Window.
This window is automatically opened when the debugger is started. The Variables Window may

also be opened by selecting Window→Debugging→Variables from the menu bar.

CPL User Guide Using CPL IDE

Copley Controls 75

6.4.5: Starting Debugger

Before starting a debugging a program:

• Clean and build project (see Building Projects, p. 64)

• Save to Flash (see Saving Program to Flash, p. 64)

• Set the appropriate breakpoints in the program (see Breakpoints, p. 73)

To start debugging a program click the Debug CVM Program button from the toolbar or select

Debug→Debug CVM Program in the menu bar.

• Note: If there are no breakpoints set in the source code, starting the debugging
program is equal to pressing the run button and the program will run through.

6.4.6: Program Execution

Once the Debugger program has been started, the Debugger buttons in the main toolbar will be
displayed. The following describes these buttons.

Continue

Continue resumes program execution from the current location in a program. Program execution
will continue until either a breakpoint is hit or the end of the program is reached.

Step into

Step into allows execution of one line of source code at a time. If the source code line contains a
function call it will step into the function rather line stepping over it. While stepping through code,

the next line of code to be executed will be highlighted in green and the program counter icon
will be placed over the line number in the left margin of the editor.

Using CPL IDE CPL User Guide

76 Copley Controls

Copley Controls 77

APPENDIX
A: RESERVED WORDS

A.1 Reserved Words

break end return

case float short

const for struct

continue function switch

default if void

else int while

elseif main

Move WaitForInput GetLatchedEvents

VelMovePosMode WaitForActualPosition GetTrajStatus

VelMoveVelMode WaitForLimitedPosition SetParameter16

CurrentMove WaitForVelocity GetParameter16

Home WaitForVelocityTraj SetParameter32

Halt WairForCurrent GetParameter32

TrajUpdate GetFaults SetParameterExt

Wait ClearFaults GetParameterExt

WaitMoveDone GetEvents SetElecGearRatio

WaitForEvent GetStickyEvents ReadInputs

SetOutput

interrupt_1 interrupt_4 GlobalEnableInterrupts

interrupt_2 interrupt_5 GlobalDisableInterrupts

interrupt_3 i_return ReadInterruptStatus

SQRT SIN ACOS

LOG COS ATAN

Using CPL IDE CPL User Guide

78 Copley Controls

EXP TAN ATAN2

POW ASIN FLOOR

CEILING ABS

Using CPL IDE CPL User Guide

80 Copley Controls

CPL User Guide

16-124981

Rev 00

November 2019

© 2019
Copley Controls

20 Dan Road
Canton, MA 02021 USA

All rights reserved

