AKM[®]2G Low Voltage Servo Motor Selection Guide

KOLLMORGEN

Kollmorgen: Your partner. In Motion.

Every solution comes from a real understanding of the challenges facing machine designers and users.

Innovators consistently rate Kollmorgen as one of their best motion systems manufacturing partners. Whether you are looking for classic servo motors, direct-drive servo motors, stepper motors, drives & amplifiers, gearing, actuation, or multi-axis motion controllers, Kollmorgen is one of the few companies in the world who actually designs and manufactures all of these products.

Our customers are leaders in many industries such as Aerospace & Defense, Printing, Packaging & Converting, Food & Beverage Processing, Medical Imaging, In Vitro Diagnostics & Laboratory Automation, Pharmaceutical Manufacturing, Material Forming and Cutting, Oil & Gas, and Robotics. Kollmorgen is also a leader in Warehouse Automation, including complete AGV systems, software, awareness and autonomy.

Our Automation Solutions can be found on Mars and in space, ships and submarines, O&G drilling and metrology, surgical robots and laser eye surgery, even inside artificial hearts. These are just a few applications that demand high-performance and high-quality while satisfying their specific needs.

Because motion matters, it's our focus: Motion can distinctly differentiate a machine and deliver a marketplace advantage by increasing its performance and dramatically improving overall equipment effectiveness (OEE).

High-performance motion can make your customer's machine more reliable and energy-efficient, enhance accuracy and improve operator safety. Motion also represents endless possibilities for innovation.

We've always understood this potential, and thus have kept motion at our core and in our Vision, Mission & Values, relentlessly developing products that offer precise control of torque, velocity and position accuracy in machines that rely on complex motion.

Removing the Barriers of Design, Sourcing, and Time

At Kollmorgen, we know that OEM engineers can achieve a lot more when obstacles aren't in the way. So, we clear obstacles in three important ways:

Integrating Standard and Custom Products

The optimal solution is often not clear-cut. Our application expertise allows us to modify standard products or develop totally custom solutions across our whole product portfolio so that designs can take flight.

Providing Motion Solutions, Not Just Components

As companies reduce their supplier base and have less engineering manpower, they need a total system supplier with a wide range of integrated solutions. Kollmorgen offers complete solutions as well as motion subsystems that combine programming software, engineering services and best-in-class motion components.

Global Footprint

With direct sales, engineering support, manufacturing facilities, and distributors spanning the Americas, Europe, the Middle East, and Asia, we're close to OEMs worldwide. Our proximity helps speed delivery and lend support where and when they're needed.

Financial and Operational Stability

Kollmorgen is part of Altra Industrial Motion. A key driver in the growth of all Altra divisions is the Altra Business System, which relies on the principle of "kaizen" – or continuous improvement. Using world-class tools, cross-disciplinary teams of exceptional people evaluate processes and develop plans that result in superior performance.

Kollmorgen: Your partner. In Motion.

Table of Contents

AKM Servo Motor Family	4
AKM2G Low Voltage Servo Motor Benefits	5
AKM2G Servo Motor Frame Sizes	6
AKM2G-2x Performance Data	8
Performance Data	8
Performance Curves	10
Dimensional Drawings	14
AKM2G-3x Performance Data	16
Performance Data	16
Performance Curves	18
Dimensional Drawings	20
AKM2G-4x Performance Data	22
Performance Data	22
Performance Curves	24
Dimensional Drawings	28
L10 Bearing Fatique and Shaft Loading	30
Thermal Sensor Protective Devices	32
Brake Option	34
Feedback Options	35
Servo Motor Feedback Combinations	36
AKM2G Servo Motor Connector Pinouts	38
AKM2G Low Voltage Servo Motor Nomenclature	41
Kollmorgen Solutions	43
Automation and Motion Control	43
Self-help Tools	43

Trademarks

AKD is a registered trademark of Kollmorgen Corporation AKD is a registered trademark of Kollmorgen Corporation EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH Ethernet/IP is a registered trademark of ODVA. Inc. Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation sercos® is a registered trademark of Sercos® international e.V. HIPERFACE and HIPERFACE DSL are registered trademarks of Max Stegmann GmbH PROFINET is a registered trademark of PROFIBUS and PROFINET International (PI) SIMATIC is a registered trademark of SIEMENS AG SpeedTec, ytec, itec and htec are registered trademarks of TE Connectivity Ltd. Windows is a registered trademark of Microsoft Corporation

AKM[®] Servo Motor Family

Kollmorgen's AKM family of servo motors gives you unprecedented choice and flexibility from a wide range of standard products so you can select the best servo motor for your application.

From the Low Voltage motors in this Selection Guide to the broad range of AKM and AKM2G motors that support voltages up to 480 Vac, washdown, food grade, and the AKMH stainless steel hygienic motor for the toughest environments-Kollmorgen has a standard motor solution that can meet your needs right from the catalog.

Still need more? For your truly unique motion control applications, work with our engineering team to customize a solution for your machine design. Either way, standard product or customized, we can help you choose the motion control solution that meets your exact requirements.

The Benefits of AKM2G Low Voltage Servo Motors

Smaller footprint reduces machine space	 » For equivalent power it is possible to use a smaller size motor than competitive motors. » Use of the smaller motor saves space achieving equivalent performance in a smaller footprint machine or saving space for other machine elements.
Voltage options to match application needs	» Standard voltage selections of 24, 48, 72 and 96 Vdc meet most available power sources
	» Kollmorgen can work with you to meet your specific requirements for the exact solution you need.
Wider speed range provides faster operation	 For many AKM2G sizes the maximum speeds are higher than competitive motors.
	» Higher speeds $ ightarrow$ operate machines faster $ ightarrow$ greater throughput.
Greater flexibility provides more options to match needs	 AKM2G is designed to support a wider array of feedback, brake, thermal sensor and shaft seal options – this greater flexibility means a higher probability of meeting application requirements with a standard product.
	» The AKM2G design has the potential for greater CoEngineering (modification) thanks to the new housing design. With a more flexible design for CoEngineering addressing applications not covered by catalog standards is increased.
Higher efficiency reduces energy consumption	 AKM2G has lower equivalent resistance than competitive solutions. For equivalent motor frame sizes AKM2G will typically be more energy efficient (2-5%).
	» Energy consumption is reduced with AKM2G compared to competitors.
	» When weight and space are critical such as on portable, mobile or battery power applications higher efficiency translates to a smaller motor with lower energy demand.

AKM[®] 2G Servo Motor Frame Sizes

AKM2G Low Voltage Motors are a part of the AKM2G Servo Motor family - the next generation of motion for more ambitious machines built on more capable performance and more confident engineering.

AKM2G-2x Flange: 58 mm

Power: 0.206 - 1.16 kW Max Speed: 8000 RPM Stacks: 4

Available with Low Voltage Windings.

AKM2G-3x

Flange: 72 mm Power: 0.175 - 1.77 kW Max Speed: 8000 RPM Stacks: 3

Available with Low Voltage Windings.

AKM2G-4x Flange: 88 mm Power: 0.267 - 2.85 kW Max Speed: 6000 RPM Stacks: 4

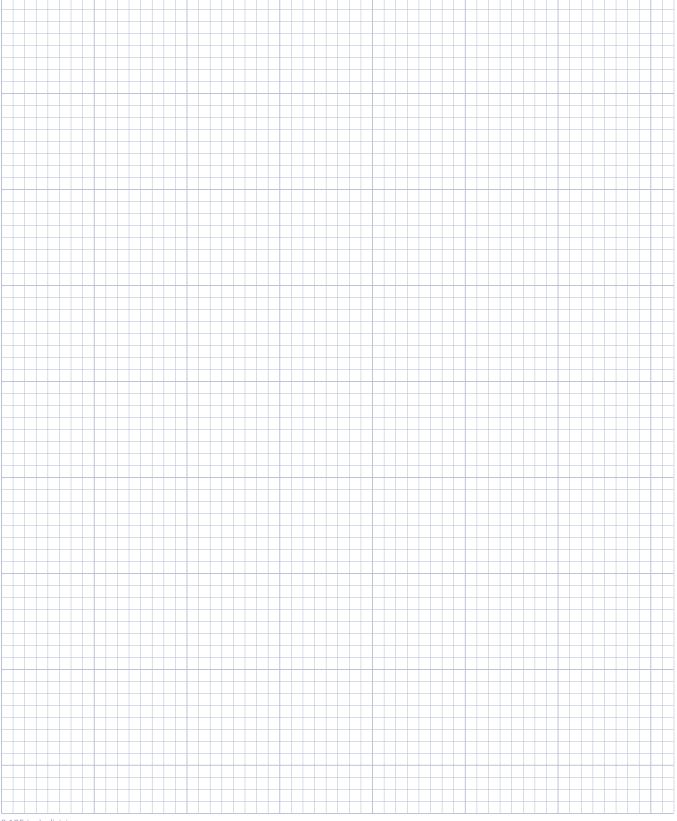
Available with Low Voltage Windings.

AKM2G-5x

Flange: 114 mm Power: 0.78 - 5.28 kW Max Speed: 6000 RPM Stacks: 4

AKM2G-6x

Flange: 142 mm Power: 1.56 - 7.79 kW Max Speed: 6000 RPM Stacks: 4


AKM2G-7x

Flange: 192 mm Power: 2.42 - 11.8 kW Max Speed: 6000 RPM Stacks: 4

Looking for Traditional AC Voltage windings? To find performance specifications, outline drawings, 3D models and performance curves for AKM2G standard windings designed for 120 Vac to 480 Vac operation, please visit the AKM2G product page: kollmorgen.com/akm2g.

Notes

0.125 inch divisions

AKM2G-2x Performance Data

					А	KM2G-2	1	Д	KM2G-2	2	А	KM2G-2	3	AKM2G-24		
	Parameters	Tol	Symbol	Units	KL	ML	PL	KL	NL	PL	KL	ML	PL	KL	ML	PL
	Max Rated Equivalent Line Voltage	Max	Vbus	Vdc	170	170	170	170	170	170	170	170	170	170	170	170
	Max Continuous Torque		_	Nm	0.640	0.642	0.642	1.10	1.11	1.12	1.48	1.49	1.50	1.79	1.79	1.82
	for ΔT winding = 100°C ①②③	Nom	T _{cs}	Ib-in	5.66	5.68	5.68	9.76	9.85	9.92	13.1	13.2	13.3	15.9	15.9	16.1
	Continuous Current for ∆T winding = 100°C ①②③	Nom	I _{CS}	A _{rms}	9.87	14.2	19.7	9.83	15.2	18.9	9.82	13.5	19.2	9.92	13.7	19.1
	Max Continuous Torque	Nom	Tcs	Nm	0.497	0.498	0.498	0.855	0.863	0.871	1.15	1.15	1.17	1.39	1.39	1.41
	for ΔT winding = 60°C 23	NOIT		Ib-in	4.39	4.41	4.41	7.57	7.64	7.70	10.1	10.2	10.3	12.3	12.3	12.5
	Max Mechanical Speed ④	Nom	N _{max}	rpm	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000
	Peak Torque 1023	Nom	Ta	Nm	1.78	1.79	1.79	3.32	3.34	3.35	4.69	4.70	4.73	5.92	5.92	5.97
		NOIT	Тр	lb-in	15.8	15.8	15.8	29.4	29.5	29.6	41.5	41.6	41.9	52.4	52.3	52.8
	Peak Current	Nom	Iр	A _{rms}	39.5	56.8	78.6	39.3	60.8	75.6	39.3	54.0	76.9	39.7	54.9	76.4
	Rated Torque (speed)		.	Nm	-	0.605	0.587	-	1.08	1.08	-	-	1.46	-	-	1.77
	123		T _{rtd}	lb-in	-	5.35	5.20	-	9.59	9.55	-	-	12.9	-	-	15.7
24 Vdc	Rated Speed		N _{rtd}	rpm	-	3400	4700	-	2200	2900	-	-	1900	-	-	1600
2	Rated Power (speed)		1	kW	-	0.215	0.289	-	0.250	0.328	-	-	0.291	-	-	0.297
	123		Prtd	Нр	-	0.289	0.388	-	0.335	0.439	-	-	0.390	-	-	0.399
	Rated Torque (speed)		_	Nm	0.574	0.539	0.534	1.05	1.02	0.997	1.42	1.40	1.35	1.73	1.69	1.65
U	123		T _{rtd}	lb-in	5.08	4.77	4.73	9.31	9.02	8.82	12.6	12.4	12.0	15.3	15.0	14.6
48 Vdc	Rated Speed		N _{rtd}	rpm	5600	8000	8000	3300	5200	6400	2400	3400	4900	2000	2900	4000
4	Rated Power (speed)		_	kW	0.337	0.452	0.45	0.363	0.555	0.67	0.358	0.498	0.694	0.363	0.514	0.692
	023		Prtd	Нр	0.451	0.606	0.600	0.487	0.744	0.896	0.480	0.668	0.930	0.487	0.689	0.928
	Rated Torque (speed)		_	Nm	0.537	-	-	1.01	0.944	0.942	1.37	1.31	1.18	1.67	1.58	1.46
U.	023		T _{rtd}	lb-in	4.76	-	-	8.92	8.35	8.33	12.1	11.6	10.4	14.8	14.0	12.9
72 Vd(Rated Speed		N _{rtd}	rpm	8000	-	-	5300	8000	8000	4000	5500	8000	3300	4700	6500
7	Rated Power (speed)			kW	0.450	-	-	0.559	0.791	0.789	0.574	0.755	0.989	0.578	0.779	0.994
	123		Prtd	Нр	0.604	-	-	0.750	1.06	1.06	0.770	1.01	1.33	0.775	1.05	1.33
	Rated Torque (speed)			Nm	0.533	-	-	0.956	-	-	1.30	1.19	-	1.59	1.44	1.30
U	123		T _{rtd}	lb-in	4.71	-	-	8.46	-	-	11.5	10.6	-	14.1	12.8	11.5
6 Vd	Rated Speed		N _{rtd}	rpm	8000	-	-	7300	-	-	5500	7600	-	4600	6500	8000
6	Rated Power (speed)			kW	0.446	-	-	0.731	-	-	0.751	0.951	-	0.766	0.982	1.085
	123		Prtd	Нр	0.598	-	-	0.980	-	-	1.01	1.27	-	1.03	1.32	1.46

Notes:

 \odot Motor winding temperature rise, ΔT = 100° C, at 40° C ambient.

② All data referenced to sinusoidal commutation.

③ Motor with standard feedback and standard heat sink.

④ May be limited at some values of Vbus.

		onage				inan			p to 3			age(t	Jonui	lueu)	
				A	KM2G-2	1	A	AKM2G-2	2	A	KM2G-2	3	A	KM2G-2	3
Parameters	Tol	Symbol	Units	KL	ML	PL	KL	NL	PL	KL	ML	PL	KL	ML	PL
Torque Constant	±10%	Кt	Nm/A _{rms}	0.0655	0.0457	0.0330	0.113	0.0740	0.0599	0.152	0.111	0.0789	0.183	0.132	0.0962
1	110%	^`t	lb-in/A _{rms}	0.580	0.405	0.292	1.00	0.655	0.530	1.35	0.985	0.698	1.62	1.169	0.852
Back EMF Constant ②	±10%	Кe	V _{rms} /k _{rpm}	4.31	3.01	2.17	7.41	4.84	3.92	9.88	7.23	5.12	11.81	8.52	6.21
Motor Constant	Nom	ĸ	N-m/√W	0.0899	0.0902	0.0902	0.143	0.145	0.146	0.186	0.188	0.190	0.223	0.224	0.227
6	Nom	Km	lb-in/√W	0.796	0.798	0.798	1.27	1.28	1.29	1.65	1.66	1.68	1.98	1.98	2.01
Resistance (line- line) ②	±10%	R _m	Ohm	0.354	0.171	0.089	0.416	0.174	0.112	0.444	0.234	0.115	0.448	0.233	0.120
Inductance Q-Axis (line-line)		Lqll	mH	0.79	0.39	0.20	1.06	0.45	0.30	1.22	0.65	0.33	1.28	0.66	0.35
Inductance D-Axis (line-line)		Ldll	mH	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Inductance Saturation Current		Lisat	Arms	69	99	137	79	121	150	89	121	171	99	137	188
Maximum Demagnetization Current		Midpeak	Arms	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Inertia (includes			kg-cm ²		0.093			0.155			0.217			0.279	
feedback) 3	±10%	Jm	lb-in-s ²		8.23E-05			1.37E-04	Ļ		1.92E-04	Ļ		2.47E-04	
Optional			kg-cm ²		0.040			0.040			0.040			0.040	
Brake Inertia (additional)	±10%	Jm	lb-in-s ²		3.54E-05			3.54E-05	5		3.54E-05	5		3.54E-05	
Weight without		w	kg		1.1			1.4			1.7			2.0	
brake ④			lb		2.4			3.1			3.7			4.4	
Static Friction		Tf	Nm		0.006	-		0.011			0.015			0.019	
15			lb-in		0.05			0.10			0.13			0.17	
Viscous Damping		K _{dv}	Nm/k _{rpm}		0.0015			0.0030			0.0045			0.0060	-
0			lb-in/k _{rpm}		0.013			0.027			0.040			0.053	
Thermal Time Constant		тст	minutes		9.6			10.8			11.9		13.0		
Coil Thermal Time Constant		MCT _f 0			TBD			TBD			TBD			TBD	
Thermal Resistance ①		R _{thw-a}	K/W		1.33			1.14			1.07			1.04	
Pole Pairs		PP			3			3			3		3		
Heat Sink Size)"x10"x1/ minum P			0"x10"x1/ minum F)"x10"x1 minum F)"x10"x1/ minum F	

AKM2G-2x Low Voltage Servo Motor Performance Data – Up to 96 Vdc voltage (continued)

AKM2G - 2 - Frame Size

ML Shaft Flange Winding

--- Winding

D Connection

Ν LD

- Brake

<u>10</u>*

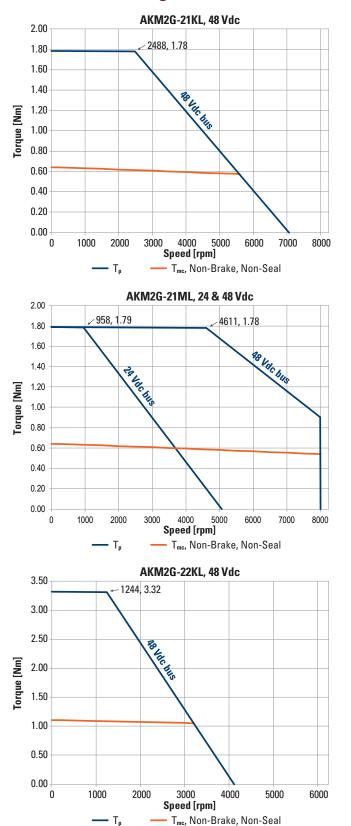
 Customization
 Thermal Sensor Feedback

Notes:

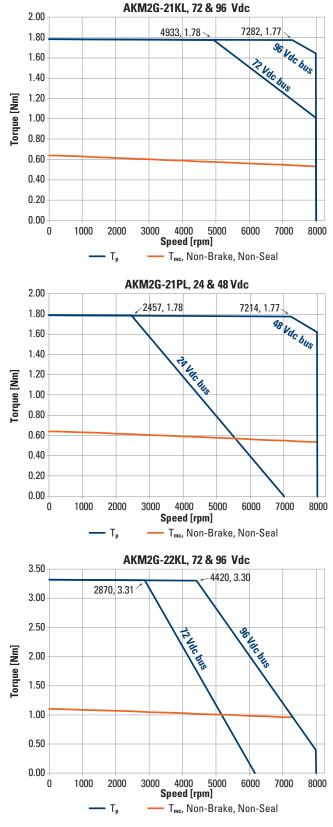
① Motor winding temperature rise, $\Delta T = 100^{\circ}$ C, at 40° C ambient.

[®] Measured at 25° C.

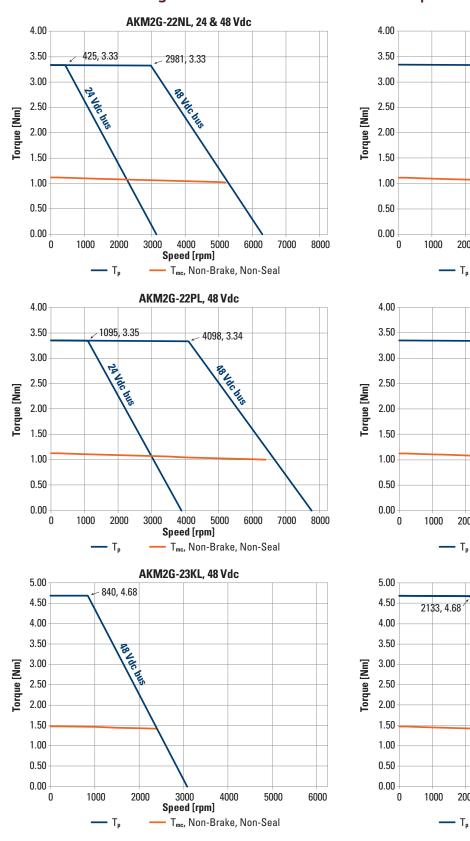
③ Add parking brake if applicable for total inertia.

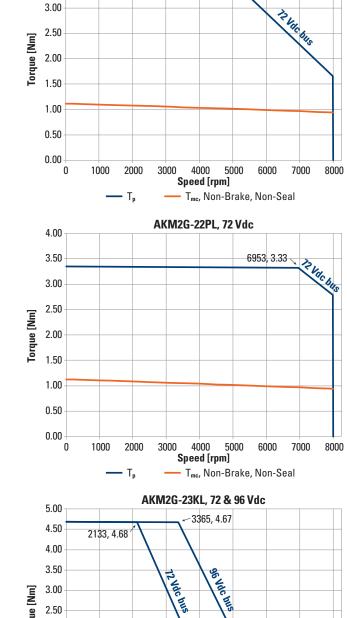

Brake motor adds 0.45 kg [1.0 lbs]

(5) Shaft seal increases Static Friction by 0.020 Nm [0.18 lb-in]


(1) This value is calculated from the Torque Constant and Resistance. Refer to those values and notes (1) & (2) for additional details.

*Complete AKM2G-2 low voltage servo motor series model nomenclature can be found on page 41.


AKM2G-2x Performance Curves


AKM2G-2x Low Voltage Servo Motor Performance Data - Up to 96 Vdc voltage

 $\begin{array}{ll} T_p &= \mbox{Peak torque} \\ T_{mc} &= \mbox{Maximum continuous torque} \\ \mbox{Refer to page 40 for torque-speed curve properties.} \end{array}$

AKM2G-2x Low Voltage Servo Motor Performance Data - Up to 96 Vdc voltage (continued)

2000

3000

AKM2G – 2—Frame Size Motor Serie

Notor Series

AN ---- Shaft ---- Flange

D — Connection

5330, 3.32

 Brake Feedback

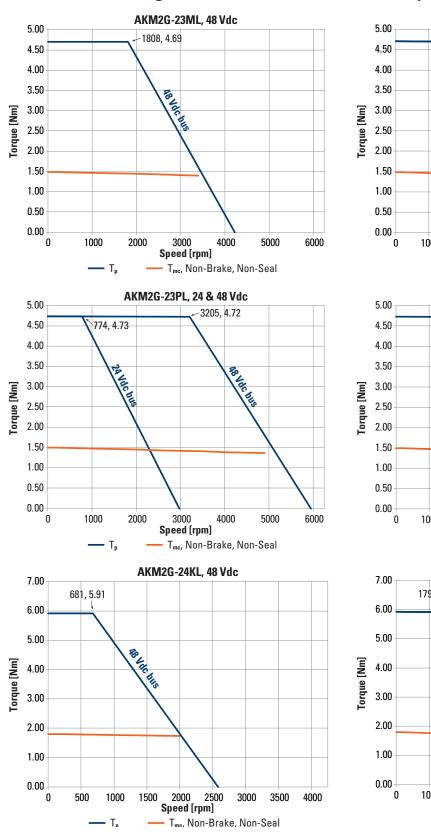
D 10

— Customization — Thermal Sensor

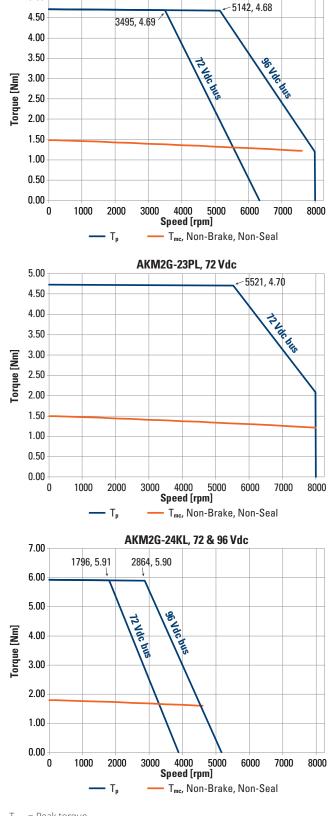
ML Winding Rotor Length

AKM2G-22NL, 72 Vdc

T_p = Peak torque T_{mc} = Maximum continuous torque Refer to page 40 for torque-speed curve properties. 7000

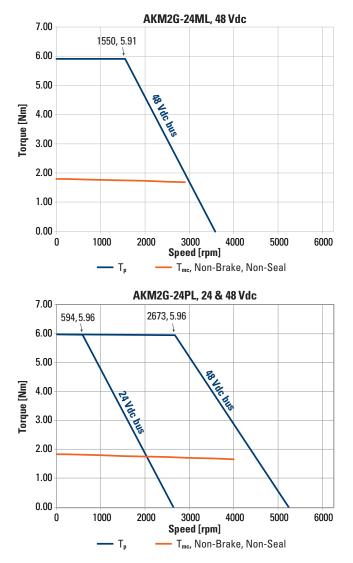

8000

5000

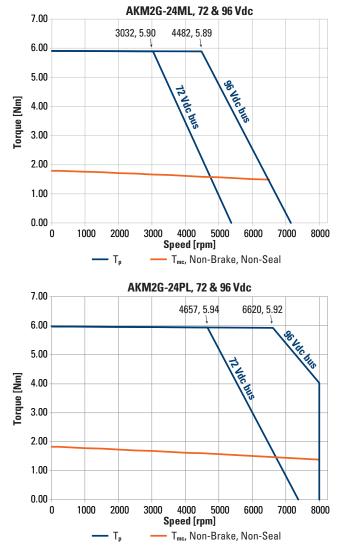

T_{mc}, Non-Brake, Non-Seal

4000 Speed [rpm] 6000

AKM2G-2x Performance Curves



AKM2G-2x Low Voltage Servo Motor Performance Data – Up to 96 Vdc voltage (continued)



AKM2G-23ML, 72 & 96 Vdc

 $\begin{array}{ll} T_p &= \mbox{Peak torque} \\ T_{mc} &= \mbox{Maximum continuous torque} \\ \mbox{Refer to page 40 for torque-speed curve properties.} \end{array}$

AKM2G-2x Low Voltage Servo Motor Performance Data - Up to 96 Vdc voltage (continued)

AKM2G – 2 Motor Series

Motor Series

1 — Rotor Length

ML

– Winding

<u>AN</u> <u>D</u>

— Flange

Shaft

D 10

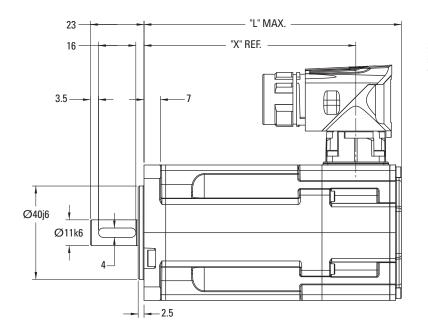
-eedback

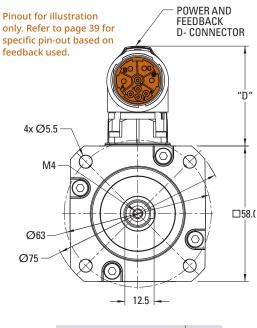
Customization
 Thermal Sensor

Ν

- Brake

Connection


 T_p = Peak torque


T_{mc} = Maximum continuous torque

Refer to page 40 for torque-speed curve properties.

AKM2G-2x Dimensional Drawings

AKM2G-2x Single Connector Frame

D- Connector Feedback	"D"
DSL & EnDat	42.8

AKM2G-2x "X" and "L" Dimensions

	No	Brake		В	rake
		DSL / EnDat 2.2			DSL / EnDat 2.2
Model	х	L	Model	x	L
AKM2G-21L	90.75	118.15	AKM2G-21L	129.75	157.15
AKM2G-22L	110	137.4	AKM2G-22L	149	176.4
AKM2G-23L	129.25	156.65	AKM2G-23L	168.25	195.65
AKM2G-24L	148.5	175.9	AKM2G-24L	187.5	214.9

0.125 inch divisions

AKM2G-3x Performance Data

AKM2G-3x Low Voltage Servo Motor Performance Data – Up to 96 Vdc voltage

	-					•		-				
					AKM	2G-31	AKM:	2G-32	AKM:	2G-33		
	Parameters	Tol	Symbol	Units	ML	PL	ML	PL	ML	PL		
	Max Rated Equivalent Line Voltage	Max	Vbus	Vdc	170	170	170	170	170	170		
	Max Continuous Torque for ΔT winding = 100°C	Name	Ŧ	Nm	1.73	1.69	2.89	2.77	3.82	3.83		
	023	Nom	T _{cs}	Ib-in	15.3	15.0	25.6	24.6	33.8	33.9		
	Continuous Current for ΔT winding = 100°C $\bigcirc 2$	Nom	I _{CS}	A _{rms}	14.2	20.0	14.8	20.0	14.8	20.0		
	Max Continuous Torque for ΔT winding = 60°C	Nom	Taa	Nm	1.34	1.33	2.25	2.23	2.97	3.01		
	23	NOT	Tcs	Ib-in	11.9	11.8	19.9	19.7	26.3	26.7		
	Max Mechanical Speed ④	Nom	N _{max}	rpm	8000	8000	8000	8000	8000	8000		
	Deals Terrous (1993)	Nom	-	Nm	6.14	6.09	10.7	10.6	14.5	14.6		
	Peak Torque 1023	Nom	Тр	lb-in	54.3	53.9	94.6	93.7	128	130		
	Peak Current	Nom	Iр	A _{rms}	56.8	80.7	59.1	82.4	59.0	80.8		
	Rated Torque (speed)		-	Nm	-	1.67	-	2.79	-	3.82		
	023		Trtd	lb-in	-	14.8	-	24.7	-	33.8		
z4 vac	Rated Speed		N _{rtd}	rpm	-	2200	-	1300	-	800		
	Rated Power (speed)		-	kW	-	0.385	-	0.379	-	0.320		
	023		Prtd	Нр	-	0.517	-	0.509	-	0.430		
	Rated Torque (speed)		-	Nm	1.65	1.57	2.81	2.70	3.69	3.64		
5	023		T _{rtd}	lb-in	14.6	13.9	24.9	23.9	32.6	32.2		
48 VUC	Rated Speed		N _{rtd}	rpm	3300	4900	2000	3000	1500	2100		
	Rated Power (speed)		-	kW	0.570	0.804	0.589	0.849	0.579	0.801		
	023		Prtd	Нр	0.764	1.08	0.790	1.138	0.777	1.07		
	Rated Torque (speed)		-	Nm	1.57	1.41	2.70	2.51	3.54	3.38		
	023		^T rtd	lb-in	13.9	12.4	23.9	22.2	31.3	30.0		
וב עער	Rated Speed		N _{rtd}	rpm	5200	7800	3200	4700	2400	3400		
	Rated Power (speed)			kW	0.853	1.15	0.906	1.23	0.890	1.21		
	023		Prtd	Нр	1.14	1.54	1.215	1.66	1.19	1.62		
	Rated Torque (speed)		-	Nm	1.46	-	2.57	2.26	3.34	3.06		
	023		Trtd	lb-in	12.9	-	22.7	20.0	29.6	27.1		
ao vac	Rated Speed		N _{rtd}	rpm	7200	-	4400	6400	3400	4700		
'n	Rated Power (speed)			kW	1.10	-	1.18	1.51	1.19	1.50		
	023		Prtd	Нр	1.47	-	1.59	2.03	1.60	2.02		

Notes:

① Motor winding temperature rise, $\Delta T = 100^{\circ}$ C, at 40° C ambient.

② All data referenced to sinusoidal commutation.

③ Motor with resolver feedback and standard heat sink.

 \circledast May be limited at some values of Vbus.

				AKM	2G-31	AKM	2G-32	AKM2G-33		
Parameters	Tol	Symbol	Units	ML	PL	ML	PL	ML	PL	
			Nm/A _{rms}	0.124	0.087	0.201	0.142	0.265	0.196	
Torque Constant ①	±10%	Кt	lb-in/A _{rms}	1.10	0.766	1.78	1.261	2.34	1.731	
Back EMF Constant ^②	±10%	К _е	V _{rms} /k _{rpm}	8.09	5.64	13.09	9.28	17.2	12.7	
Matan Canadant @	Nem	K	N-m/√W	0.211 0.210		0.335	0.332	0.422	0.428	
Motor Constant ®	Nom	Km	lb-in/√W	1.87	1.85	2.97	2.94	3.74	3.79	
Resistance (line-line) ^②	±10%	Rm	Ohm	0.230	0.114	0.240	0.122	0.262	0.139	
Inductance Q-Axis (line-line)		Lqll	mH	0.54	0.26	0.57	0.29	0.61	0.33	
Inductance D-Axis (line-line)		Ldll	mH	TBD	TBD	TBD	TBD	TBD	TBD	
Inductance Saturation Current		Lisat	Arms	188	270	236	333	270	366	
Maximum Demagnetization Current		Midpeak	Arms	TBD	TBD	TBD	TBD	TBD	TBD	
Inertia (includes Resolver			kg-cm ²	0.4	26	0.8	313	1.2	200	
feedback) ③	±10%	Jm	lb-in-s ²	3.77	E-04	7.20	E-04	1.06	E-03	
Optional Brake Inertia			kg-cm ²	0.1	20	0.1	0.120		120	
(additional)	±10%	Jm	lb-in-s ²	1.06	E-04	1.06	E-04	1.06	E-04	
			kg	1	.8	2	.5	3.3		
Weight without brake ④		W	lb	4	.0	5	.6	7	.2	
		-	Nm	0.0)13	0.0)23	0.0)31	
Static Friction 🛈 🖲		Т _f	lb-in	0.	12	0.	20	0.	27	
Vierene Demainer @		K	Nm/k _{rpm}	0.0	039	0.0	078	0.0	117	
Viscous Damping ①		K _{dv}	lb-in/k _{rpm}	0.0)35	0.0)69	0.1	104	
Thermal Time Constant		тст	minutes	1	7	2	1	2	25	
Coil Thermal Time Constant		MCT _f 0		TE	3D	TE	3D	TI	ЗD	
Thermal Resistance ①		R _{thw-a}	K/W	0.9	980	0.8	368	0.7	795	
Pole Pairs		PP			4		4		4	
Heat Sink Size					" Aluminum ate		" Aluminum ate	10″x10″x1/4 Pla	l" Aluminum ate	

AKM2G-3x Low Voltage Servo Motor Performance Data – Up to 96 Vdc voltage (continued)

AKM2G - 3 - Frame Size

<u>2-</u>

Ν — Brake — Feedback Customization
 Thermal Sensor

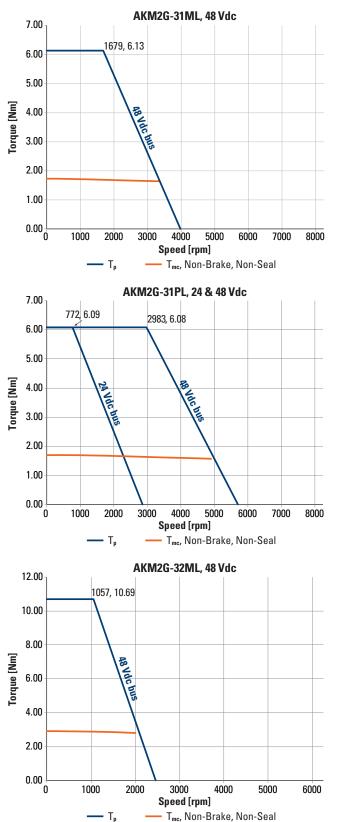
<u>10</u>*

Notes:

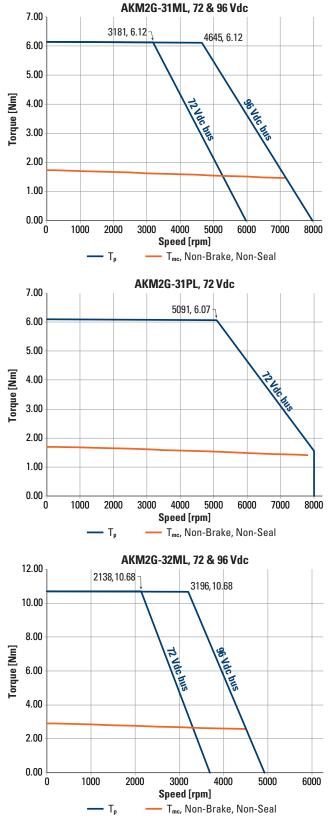
 \odot Motor winding temperature rise, $\Delta T = 100^{\circ}$ C, at 40° C ambient.

② Measured at 25° C.

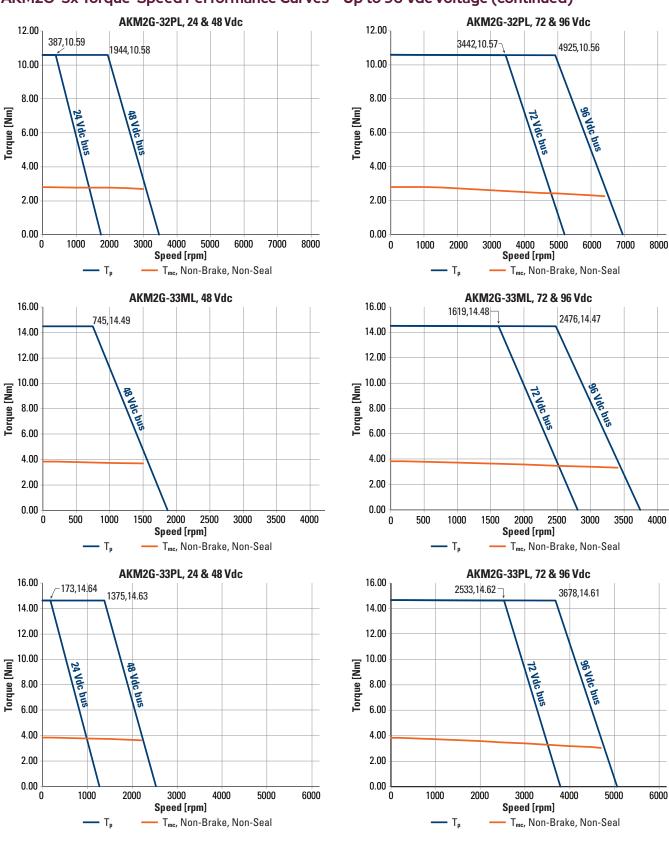
③ Add parking brake if applicable for total inertia.


Brake motor adds 0.72 kg [1.6 lbs]

© Shaft seal increases Static Friction by 0.017 Nm [0.15 lb-in]


(1) This value is calculated from the Torque Constant and Resistance. Refer to those values and notes (1) & (2) for additional details.

*Complete AKM2G-3 low voltage servo motor series model nomenclature can be found on page 41.


AKM2G-3x Performance Curves

AKM2G-3x Torque-Speed Performance Curves – Up to 96 Vdc voltage

 $\begin{array}{ll} T_p &= \mbox{Peak torque} \\ T_{mc} &= \mbox{Maximum continuous torque} \\ \mbox{Refer to page 40 for torque-speed curve properties.} \end{array}$

AKM2G-3x Torque-Speed Performance Curves – Up to 96 Vdc voltage (continued)

<u>AKM2G</u> – <u>3</u>

otor Series

2 Rotor Length

Frame Size

ML

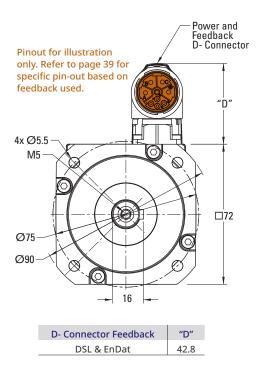
- Winding

AN

- Shaft

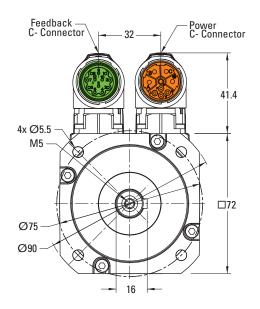
Connection

Flange


Customization
 Thermal Sensor

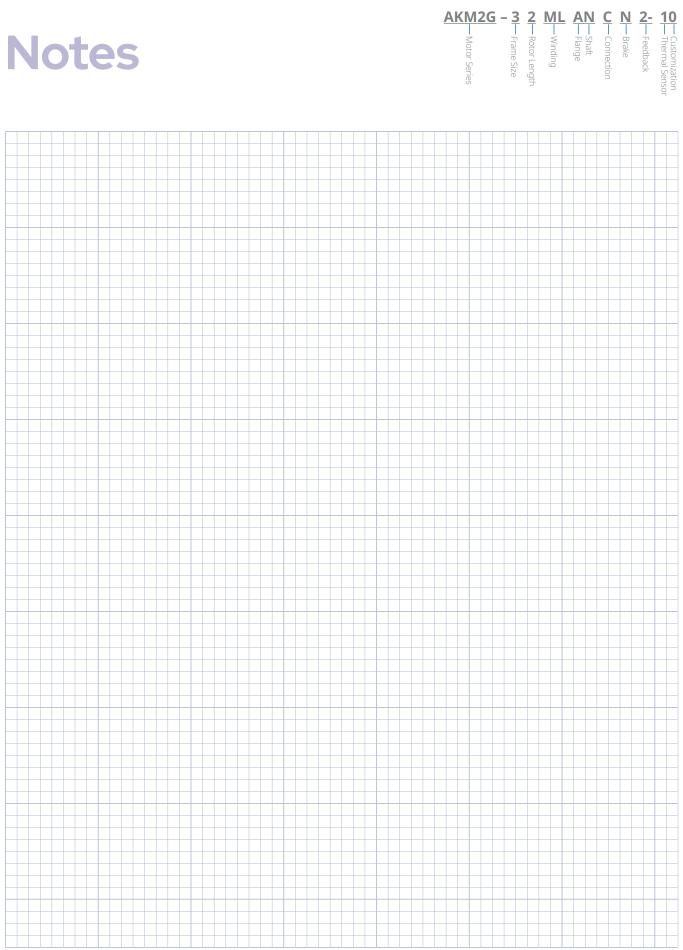
 $\begin{array}{ll} T_p &= \mbox{Peak torque} \\ T_{mc} &= \mbox{Maximum continuous torque} \\ \mbox{Refer to page 40 for torque-speed curve properties.} \end{array}$

AKM2G-3x Dimensional Drawings


AKM2G-3x Single Connector Frame

AKM2G-3x Dual Connector Option

Pinouts for illustration only. Refer to page 38 for specific pin-out based on feedback used.



AKM2G-3x "X" and "L" Dimensions

		No Brake	
		Resolver / Commutating Encoder	DSL / EnDat 2.2
Model	х	L	L
AKM2G-31L	101.1	121.4	129.4
AKM2G-32L	132.25	152.55	160.55
AKM2G-33L	163.4	183.7	191.7

		Brake	
		Resolver / Commutating Encoder	DSL / EnDat 2.2
Model	х	L	L
AKM2G-31L	142.3	162.6	170.6
AKM2G-32L	173.45	193.75	201.75
AKM2G-33L	204.6	224.9	232.9

0.125 inch divisions

AKM2G-4x Performance Data

AKM2G-4x Low Voltage Servo Motor Performance Data - Up to 96 Vdc voltage

				AKM	2G-41		AKM2G-4	2	ŀ	AKM2G-4	3	AKM2G-44			
Parameters	Tol	Symbol	Units	ML	PL	ML	NL	PL	LL	ML	NL	LL	ML	NL	
Max Rated Equivalent Line Voltage	Max	Vbus	Vdc	170	170	170	170	170	170	170	170	170	170	170	
Max Continuous Torque for ∆T winding = 100°C ①②③	Nom	T _{cs}	Nm Ib-in	2.91 25.7	2.91 25.8	5.17 45.7	5.17 45.7	5.16 45.7	7.07	7.06	7.06 62.5	8.59 76.0	8.60 76.1	8.59 76.0	
Continuous Current for ΔT winding = 100°C ①②③	Nom	I _{cs}	A _{rms}	14.1	19.9	13.8	17.4	19.7	12.5	14.0	18.0	12.8	14.5	16.4	
Max Continuous Torque for ∆T winding = 60°C ②③	Nom	T _{CS}	Nm Ib-in	2.26	2.27 20.1	4.03 35.6	4.03 35.7	4.02 35.6	5.51 48.7	5.50 48.7	5.51 48.7	6.70 59.3	6.71 59.4	6.70 59.3	
Max Mechanical Speed ④	Nom	N _{max}	rpm	6000	6000	6000	6000	6000	6000	6000	6000	6000	6000	6000	
Peak Torque 123	Nom	Тр	Nm	7.28	7.28	14.5	14.5	14.5	21.2	21.2	21.2	27.1	27.1	27.1	
			lb-in	64.4	64.4	128	128	128	188	188	188	240	240	240	
Peak Current	Nom	Ip	A _{rms}	56.2	79.7	55.1	69.8	78.8	50.2	56.0	71.8	51.3	58.2	65.7	
Rated Torque (speed) ①②③		T _{rtd}	Nm Ib-in	-	2.89 25.6	-	-	-	-	-	-	-	-	-	
Rated Speed		N _{rtd}	rpm	-	1000	-	-	-	-	-	-	-	-	-	
Rated Power (speed)			kW	-	0.303	-	-	-	-	-	-	-	-	-	
123		Prtd	Нр	-	0.406	-	-	-	-	-	-	-	-	-	
Rated Torque (speed) ①②③		T _{rtd}	Nm	-	-	-	5.12	5.10	-	-	7.01	-	-	-	
			lb-in	-	-	-	45.3	45.1	-	-	62.0	-	-	-	
Rated Speed		N _{rtd}	rpm	-	-	-	800	900	-	-	600	-	-	-	
Rated Power (speed)		Prtd	kW	-	-	-	0.429	0.480	-	-	0.440	-	-	-	
			Нр	-	-	-	0.575	0.64	-	-	0.590	-	-	-	
Rated Torque (speed)		T _{rtd}	Nm lb-in	2.85 25.2	2.80 24.8	5.10 45.1	5.08 44.9	5.04 44.6	-	7.00 62.0	6.96 61.6	-	8.54 75.6	8.50 75.2	
Pated Speed		N		1600	24.0	900	1100	1300	-	600	800	-	500	600	
Rated Speed		N _{rtd}	rpm kW	0.477	0.674	0.481	0.585	0.686	-	0.440	0.58		0.447	0.534	
Rated Power (speed)		P _{rtd}	Нр	0.639	0.904	0.645	0.585	0.000	-	0.440	0.58	-	0.447	0.554	
			Nm	2.78	2.68	5.02	4.96	4.89	6.94	6.91	6.83	8.46	8.41	8.36	
Rated Torque (speed)		Trtd	lb-in	2.78	23.7	44.5	43.9	43.3	61.4	61.1	60.4	74.9	74.4	74.0	
Rated Speed		N _{rtd}	rpm	2500	3600	1400	1800	2100	900	1000	1300	74.9	900	1000	
		- vrta	kW	0.727	1.01	0.736	0.93	1.08	0.654	0.724	0.93	0.620	0.793	0.875	
Rated Power (speed) 123		Prtd	Нр	0.97	1.35	0.988	1.25	1.44	0.88	0.97	1.25	0.832	1.06	1.17	
Dated Targue (speed)			Nm	2.69	2.51	4.93	4.81	4.73	6.86	6.80	6.65	8.35	8.29	8.20	
Rated Torque (speed) 123		Trtd	lb-in	23.8	22.2	43.6	42.6	41.8	60.7	60.2	58.8	73.9	73.4	72.5	
Rated Speed		N _{rtd}	rpm	3400	5000	1900	2500	2800	1200	1400	1900	1000	1200	1400	
Rated Power (speed)		1.64	kW	0.96	1.31	0.98	1.26	1.39	0.86	1.00	1.32	0.874	1.04	1.20	
123		Prtd	Нр	1.28	1.76	1.32	1.69	1.86	1.16	1.34	1.77	1.17	1.40	1.61	
Rated Torque (speed)			Nm	-	-	-	-	-	-	-	-	8.28	8.21	8.11	
123		Trtd	lb-in	-	-	-	-	-	-	-	-	73.2	72.6	71.7	
Rated Speed		N _{rtd}	rpm	-	-	-	-	-	-	-	-	1200	1400	1600	
Rated Power (speed)			kW	-	-	-	-	-	-	-	-	1.040	1.20	1.36	
123		Prtd	Нр	-	-	-	-	-	-	-	-	1.39	1.61	1.82	

Notes:

Motor winding temperature rise, ΔT = 100° C, at 40° C ambient.

② All data referenced to sinusoidal commutation.

③ Motor with resolver feedback and standard heat sink.

④ May be limited at some values of Vbus.

AKM2G-4x Low Voltage Servo Motor Performance Data - Up to 96 Vdc voltage (continued)

AKM2G – 4 – Frame Size Motor Serie:

Motor Series

N—Brake **C**—Connection Shaft Flange

10 Customization Thermal Sensor 2- Feedback

2 Winding Rotor Length

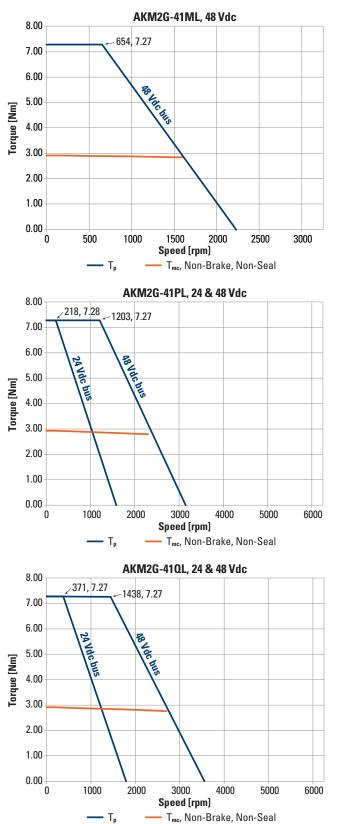
		_		AKM2	2G-41	ŀ	KM2G-4	2	A	KM2G-4	.3	AKM2G-44		
Parameters	Tol	Symbol	Units	ML	PL	ML	NL	PL	LL	ML	NL	LL	ML	NL
Torque Constant	±10%	К _t	Nm/A _{rms}	0.209	0.147	0.378	0.298	0.263	0.567	0.507	0.395	0.674	0.595	0.525
1	10%	'`t	lb-in/A _{rms}	1.85	1.30	3.34	2.64	2.33	5.02	4.49	3.50	5.97	5.26	4.65
Back EMF Constant ②	±10%	К _е	V _{rms} /k _{rpm}	13.8	9.75	25.2	19.9	17.6	38.0	34.0	26.5	45.5	40.1	35.5
Motor Constant	Nom	к _m	N-m/√W	0.333	0.334	0.536	0.536	0.536	0.687	0.686	0.687	0.809	0.810	0.809
6		''m	lb-in/√W	2.95	2.96	4.74	4.75	4.74	6.08	6.07	6.08	7.16	7.17	7.16
Resistance (line- line) ②	±10%	Rm	Ohm	0.262	0.130	0.331	0.206	0.161	0.454	0.364	0.221	0.463	0.359	0.281
Inductance Q-Axis (line-line)		Lqll	mH	1.6	0.80	2.3	1.5	1.1	3.4	2.7	1.6	3.6	2.8	2.2
Inductance D-Axis (line-line)		Ldll	mH	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Inductance Saturation Current		Lisat	Arms	71	101	80	101	114	80	89	114	89	101	114
Maximum Demagnetization Current		Midpeak	Arms	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Inertia (includes		_	kg-cm ²	0.774		1.36			1.95			2.53		
Resolver feedback) ③	±10%	Jm	lb-in-s ²	6.85	E-04	1.20E-03		1.72E-03		2.24E-03				
Optional		_	kg-cm ²	0.360		0.36		0.36		0.360				
Brake Inertia (additional)	±10%	Jm	lb-in-s ²	3.19	E-04		3.19E-04			3.19E-04		3.19E-04		
Weight without			kg	2.9	90	3.86		4.81		5.76				
brake ④		W	lb	6.3	39		8.5		10.6			12.7		
Static Friction		Tf	Nm	0.02	230		0.030		0.0380			0.0450		
15		.1	lb-in	0.20	036		0.27		0.336			0.398		
Viscous Damping		Kdv	Nm/k _{rpm}	0.00	450		0.009			0.0125			0.0163	
0			lb-in/k _{rpm}	0.03	398		0.08		0.111			0.144		
Thermal Time Constant		тст	minutes	17		22		27			32			
Coil Thermal Time Constant		MCT _f 0		TBD			TBD		TBD				TBD	
Thermal Resistance ①		R _{thw-a}	K/W	0.880		0.725			0.637		0.598			
Pole Pairs		PP		5	5		5		5			5		
Heat Sink Size				10"x10 Aluminu)"x10"x1/ minum P)"x10"x1/ minum F)"x10"x1/ minum P	

Notes:

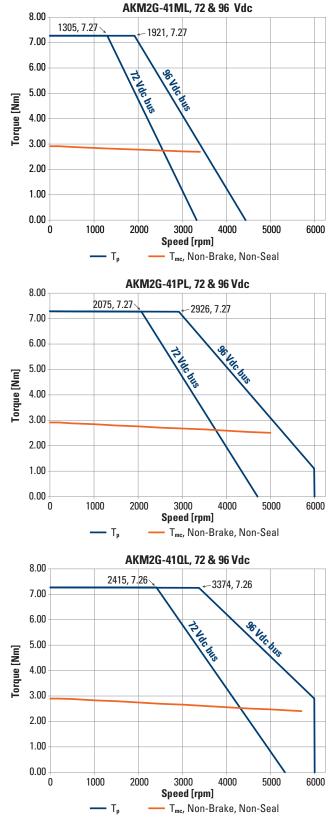
 \oplus Motor winding temperature rise, ΔT = 100° C, at 40° C ambient.

② Measured at 25° C.

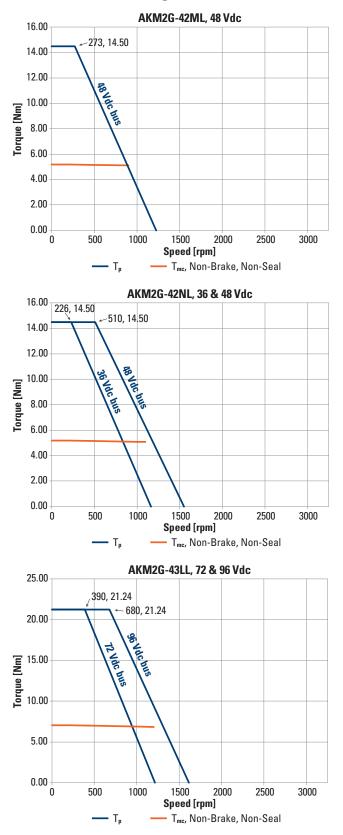
③ Add parking brake if applicable for total inertia.


Brake motor adds 1.36 kg [3.0 lbs]

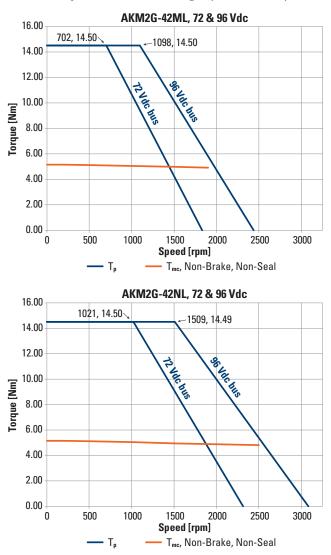
(s) Shaft seal increases Static Friction by 0.023 Nm [0.20 lb-in]


(1) This value is calculated from the Torque Constant and Resistance. Refer to those values and notes (1) & (2) for additional details.

*Complete AKM2G-4 low voltage servo motor series model nomenclature can be found on page 41.


AKM2G-4x Performance Curves

AKM2G-4x Low Voltage Servo Motor Performance Data – Up to 96 Vdc voltage



 $\begin{array}{ll} T_p &= \mbox{Peak torque} \\ T_{mc} &= \mbox{Maximum continuous torque} \\ \mbox{Refer to page 40 for torque-speed curve properties.} \end{array}$

AKM2G-4x Low Voltage Servo Motor Performance Data – Up to 96 Vdc voltage (continued)

 $\begin{array}{ll} T_p &= \mbox{Peak torque} \\ T_{mc} &= \mbox{Maximum continuous torque} \\ \mbox{Refer to page 40 for torque-speed curve properties.} \end{array}$

ML - Winding

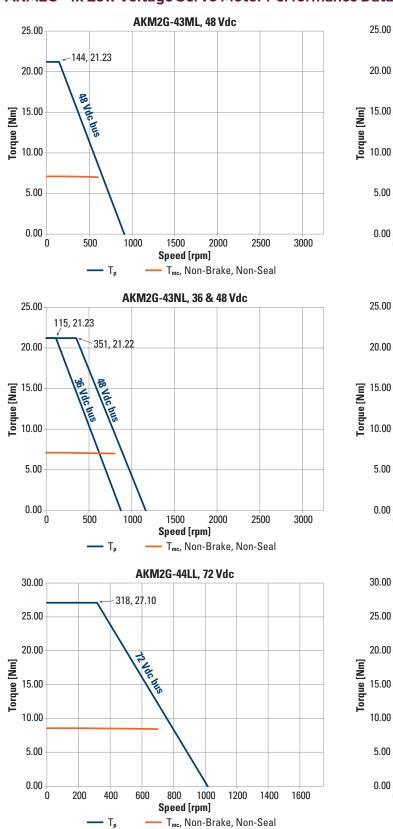
4

— Frame Size

2 Rotor Length

AKM2G

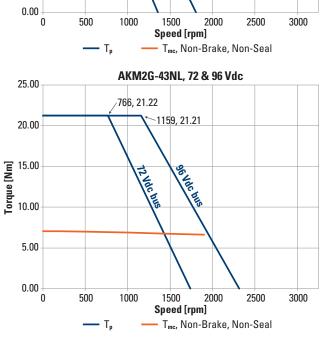
otor Series


AN Shaft Flange

- Brake Connection

Customization Thermal Sensoi Feedback

AKM2G-4x Performance Curves

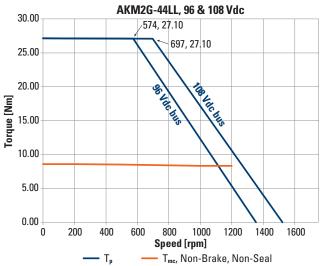


AKM2G-4x Low Voltage Servo Motor Performance Data – Up to 96 Vdc voltage (continued)

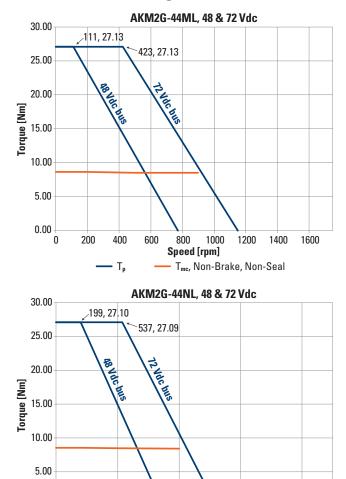
25.00

20.00

5.00


AKM2G-43ML, 72 & 96 Vdc

495, 21.23

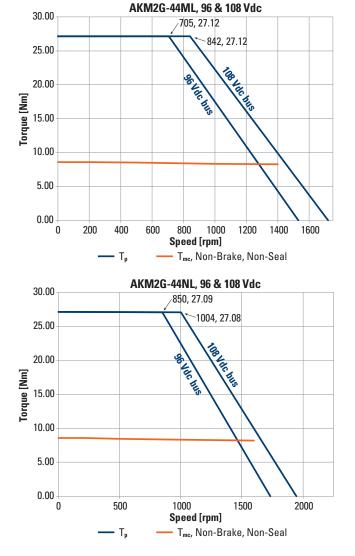

12 Ndc bus

812, 21.23

96 Vdc bus

T_p = Peak torque T_{mc} = Maximum continuous torque Refer to page 40 for torque-speed curve properties.

1000


Speed [rpm]

1500

T_{mc}, Non-Brake, Non-Seal

2000

AKM2G-4x Low Voltage Servo Motor Performance Data – Up to 96 Vdc voltage (continued)

AKM2G

otor Series

2 Rotor Length

ML

- Winding

— Flange

Shaft

— Brake
— Connectior

- Customization - Thermal Sensor

Feedback

4

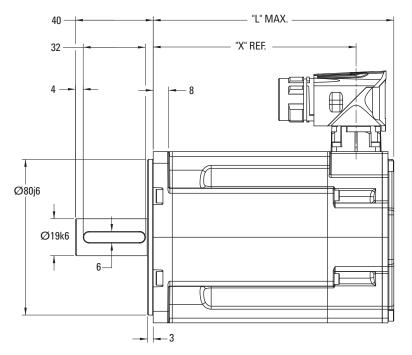
— Frame Size

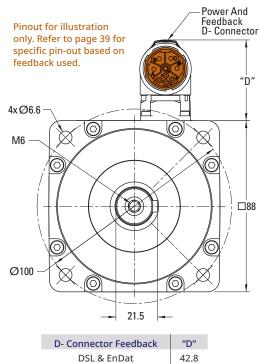
 T_p = Peak torque

0

0.00

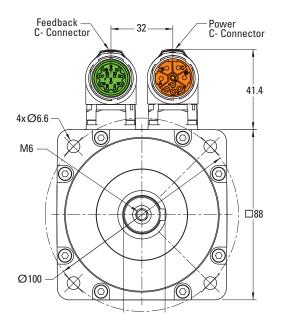
T_{mc} = Maximum continuous torque


Refer to page 40 for torque-speed curve properties.


500

T_p

AKM2G-4x Dimensional Drawings


AKM2G-4x Single Connector Frame

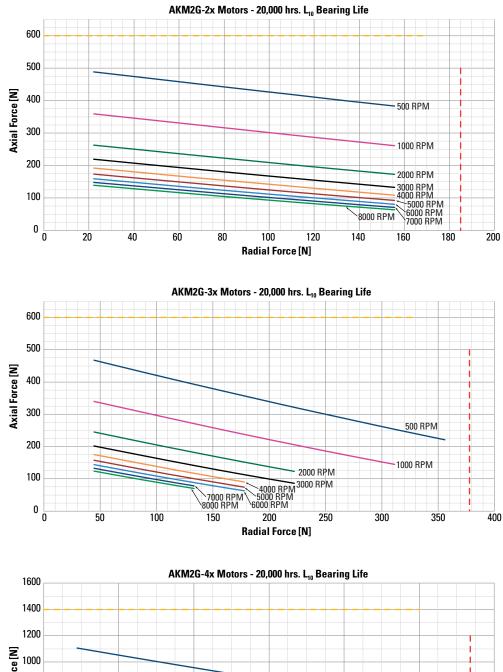
AKM2G-4x Dual Connector Option

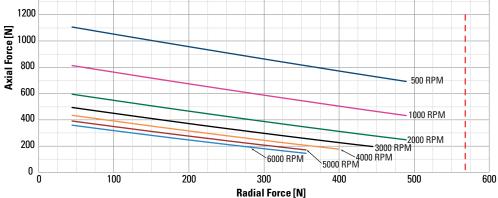
Pinouts for illustration only. Refer to page 38 for specific pin-out based on feedback used.

AKM2G-4x "X" and "L" Dimensions

	No Brake						
		Resolver / Commutating Encoder	DSL / EnDat 2.2				
Model	х	L	L				
AKM2G-41L	104.3	124.6	132.6				
AKM2G-42L	130.55	150.85	158.85				
AKM2G-43L	156.8	177.1	185.1				
AKM2G-44L	183.05	203.35	211.35				

	Brake					
		Resolver / Commutating Encoder	DSL / EnDat 2.2			
Model	х	L	L			
AKM2G-41L	152.1	172.4	180.4			
AKM2G-42L	178.35	198.65	206.65			
AKM2G-43L	204.6	224.9	232.9			
AKM2G-44L	230.85	251.15	259.15			


0.125 inch divisions


AKM2G - 4 - Frame Size AKM2G - 4 - Frame Size ML - Connection Flange Winding ML - Vinding ML - Vinding ML - Vinding ML - Vinding

www.kollmorgen.com | 29

L10 Bearing Fatigue & Shaft Loading

Bearing Life

Shaft Loading

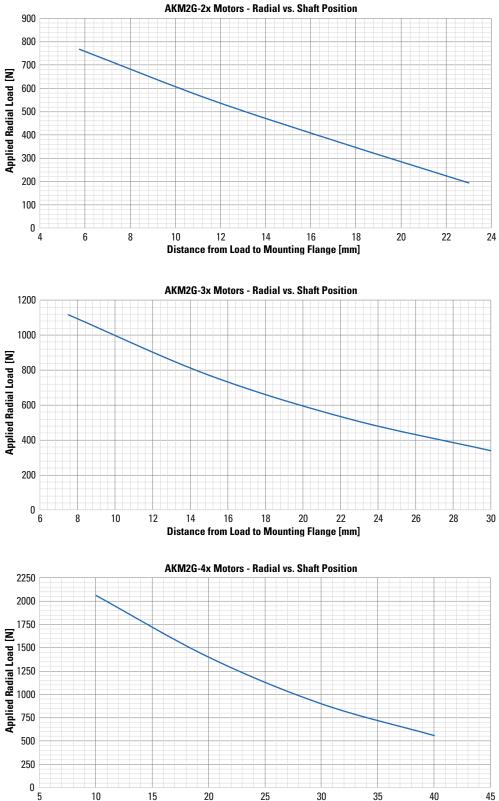
Motor	Max. Radial Force (N)	Max. Axial Force (N)
AKM2G-2	195	600
AKM2G-3	340	600
AKM2G-4	560	1400

The maximum radial load ratings reflect the following assumptions:

Motors are operated with peak torque of the longest member of the frame size.

Fully reversed load applied to the end of the smallest diameter standard mounting shaft extension.

Infinite life with 99% reliability.


Safety factor = 2.

Mineral-filled PTFE Teflon[®] Shaft Seals

There is a normal break-in period for our Mineral-filled PTFE Teflon[®] shaft seals. Best conditions during the breakin period would be at the operational temperature and speed that would be typical for the application.

During the break-in period, some "shedding" of mineralfilled PTFE Teflon material is normal. The debris is not a sign of seal deterioration or failure. The material "shed" should be reduced with usage.

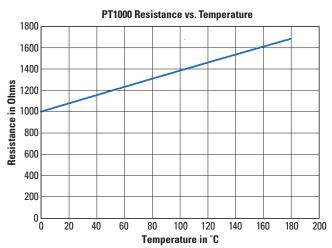
Typically, a few hours at operational speed is enough to break-in the shaft seal.

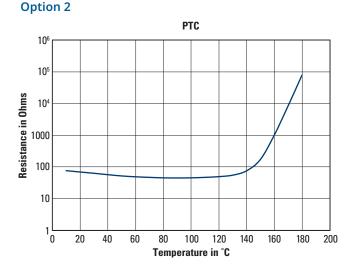
Distance from Load to Mounting Flange [mm]

Thermal Sensor Protective Devices

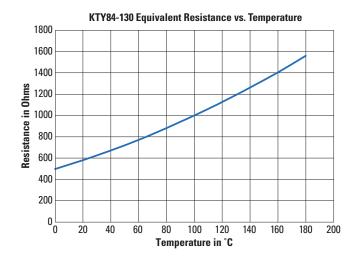
The standard version of each motor is fitted with an electrically isolated PT-1000. The thermal sensors do not provide any protection against short, heavy overloading.

The motor can be delivered with a PT-1000 + PTC, PTC, or KTY 84-130 equivalent sensors optionally (see Thermal Sensor options 2, 3, 0).

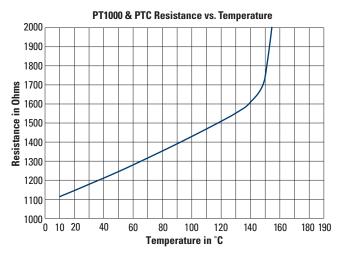

With digital feedback systems Hiperface DSL (GU) and EnDat 2.2 (LD) the temperature sensor status is transmitted digitally and evaluated in the drive.


Provided that our configured feedback cables are used, the sensor is integrated into the monitoring system of the digital servo amplifiers.

Thermal Device Options: Resistance vs. Temperature Graphs


Kollmorgen AKD drives can directly interpret information from the motor thermal sensors to properly reflect the motor winding temperature. For other drives please refer to the graph Delta Between Motor Winding and Thermal Device on the following page.

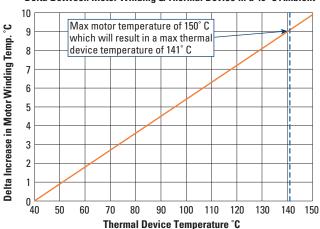
Standard 1



Option 3

Option 0

Delta Between Motor Winding and Thermal Device


When using a drive other than the Kollmorgen AKD you will need to account for the difference (Delta) in temperature between the value reported by the thermal sensor and the actual motor winding temperature. This is necessary to insure proper operation and protection of the motor.

The provided graph shows the delta between the reported device temperature on the x axis and the motor winding temperature on the y axis and should be used to adjust the response of the system for the difference between the thermal sensors reported temperature and the actual motor winding temperature.

Examples:

At 60°C on thermal device temperature the winding temperature will be 1.8°C higher (61.8°C).

At 130°C on thermal device temperature the winding temperature will be 8.1°C higher (138.1°C).

Delta Between Motor Winding & Thermal Device in a 40° C Ambient

Brake Option

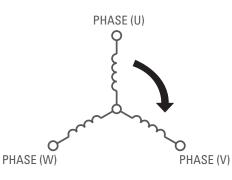
Failsafe, Holding Brake

The holding brake is designed to provide static holding torque to the motor shaft with the brake coil de-energized. The brake must first be released (coil energized) prior to commanding motor rotation as determined by its drop-out time. The brake is intended for holding or "parking" of a stationary motor. It is not intended for dynamic braking. There should be absolutely no motion of the rotor when power is removed from the brake coil.

AKM2G Motor Brake Specifications

		c c c c c c c c c c c c c c c c c c c							Backlash ²			
Motor Family	Minimur Torc @12	ue	Weight Adder		Power Current ¹ Consumption @24 V, Nominal 20°C		Inertia Adder		Time	Opening Time (release)	Maximum	Typical
	Nm	lb-in	Kg	lb	Watts ±7%	ADC	kg-cm ²	lb-in-sec ²	msec	msec	deg.	deg.
AKM2G-2	2	17.7	0.45	1.0	11.4	0.47	0.04	3.5E-05	10	40	1	0.32
AKM2G-3	3.3	29.205	0.72	1.6	12.6	0.53	0.12	1.1E-04	17	55	1	0.6
AKM2G-4	7	62.0	1.36	3.0	14.7	0.61	0.36	3.2E-04	20	85	1	0.55

Contamination of the motor internal compartment by oil or other foreign materials will result in failure of the brake. Check the suitability of motor sealing for the working environment.


Note 1: Operating Voltage: 24 Vdc ± 10%.

Note 2: Maximum backlash is calculated using worst-case tolerancing, and typical backlash is calculated using statistical tolerancing.

Feedback Options

Phasing Diagram - All Motors

Motor Winding Configuration

General note:

When motor is rotated CW (viewed from drive shaft end), these waveforms result:

Voltage U , leads V , leads W.

Voltage U-W leads Voltage V-W by 60° electrical.

AKM2G LV Servo Motor Feedback Summary

Available Models⁵	Code	Description	Connector	Туре	Size	Motor ID Support ³	Accuracy ^{1,2} (arc-sec)	RMS Noise ¹ (arc-sec)	Resolution	Absolute revs.
3, 4	2-	Commutating Encoder	C/G	Optical	15	No	±218.2"	N/A	12 bits	None
2, 3, 4	GU	HIPERFACE DSL®	D	Capacitive	EEM37	Yes	±240"	±20"	17 bits	4096
2, 3, 4	LD	EnDat [®] 2.2	D	Inductive	EQI 1131	Yes	±120"	See Note 4	19 bits	4096
3, 4	R-	Resolver	C/G	Inductive	15	No	±540"	N/A	24 bits for AKD	1

Note 1: AKD drives have a resolver measurement accuracy of ±45", for a drive w/ motor accuracy of ±585" and RMS Noise of ±9.9" Accuracy & RMS Noise data when used with other drives may be different.

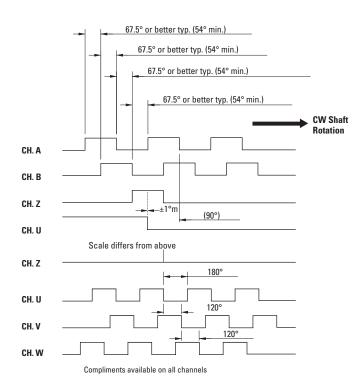
Note 2: Accuracy refers to overall system accuracy once installed in the motor. Noise refers to the RMS position noise when at stand-still.

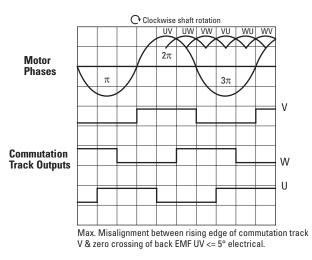
Note 3: Motor ID support means electronic motor nameplate data is included, allowing for plug-and-play commissioning.

Note 4: At the time of printing, this information was not available. Please contact Kollmorgen Customer Support for the latest update.

Note 5: AKM2G-LV Size 2 models are only available in single-connector configurations.

With AKD drives, all received positions are interpolated to a 32-bit resolution per revolution. When using a drive other than AKD consult the drive manufacturer for this information.


Connector Options Summary for Low Voltage Servo Motors


Available Models	Model Designation	Connection	Position of connection
3, 4	С	2 SpeedTec [®] M23	Angular, rotatable, motor mounted
2, 3, 4	D*	1 htec [®] M23	Angular, rotatable, motor mounted
3, 4	G	2 SpeedTec [®] M23	Straight, motor mounted

* Hybrid connectors valid for DSL and EnDat Feedback only.

Servo Motor Feedback Combinations

Commutating Encoder Feedback Option (2-)

Motor Connections

Commutation Track Outputs Motor Phases	U V W U V W	
---	----------------------------	--

Output Comm: Open Collector W 2.2 k OHMS ExternalL Pull Ups (SINK 8 mA MAX.)

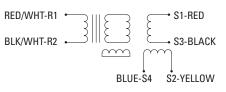
Parameter	Units	2-
Input Voltage	Vdc ±10%	5
Output Data		26LS31 Diff. Line Driver. Sink/Source 40mA Max
Line Count		2,048
Frequency Response	KHz	200
Max. Speed	RPM	8,000
Min. Edge Separation of Incremental Channel	°e MIN.	45
Index to U Comm Channel		±/-1°m Index Center To U Falling Edge
Index Pulse Width		Gated With B Low
Incremental Channel Accuracy		±1 Arc Min. Max. Edge to Edge
Max. Acceleration	Rad/s ²	100,000
Operating Temperature	°C	0 -120
Storage Temperature	°C	-40 - 120

	Туре	AKM2G-3 and AKM2G-4
Commutating Channel	2-	8 Pole 45°m
Moment of Interia (kg-cm ²)	2-	0.0048

Absolute Digital Feedback Options

HIPERFACE DSL® (GU)

Туре		Multi-Turn "GU"
Frame Size		AKM2G-2, -3 and -4
Number of Absolute Ascertainable Revolutions		4096
Supply Voltage Range		7 to 12
Current Consumption	mA MAX.	150
Operating Temperature	°C MIN/MAX	-40/115
Inertia	g-cm ²	1
Output Interface		SICK HIPERFACE DSL [®]
Туре		EEM37

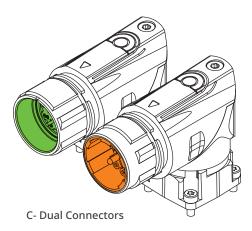

EnDat Inductive (LD)

Туре		Multi-Turn "LD"		
Frame Size		AKM2G2, -3 and -4		
Revolutions		4096		
Input Voltage	Vdc	3.6 to 14		
Current Consumption	mA Typical	5 V: 115 (without load)		
Operating Temperature	°C MIN/MAX	-40/115		
Inertia	kg-m ²	0.3x10 ⁻⁶		
Output Interface		HEIDENHAIN EnDat 2.2/22		
Туре		EQI 1131		

Resolver Feedback Option (R-)

Resolver Data	Units	AKM2G-3 and -4
Resolver Data		1 Speed
Input Voltage	V _{RMS}	7.0
	k Hz	10
Input Current Max.	mA	50
Transformation Ratio	N/A	0.5 ±10%
Null Voltage	mV _{RMS}	30
Max. Error (pk-pk)	MINS.	18
Phase Shift	Degrees	0
Operating Temperature	°C	-55° to 155°
Rotor Inertia Max.	kg-cm ²	0.046

Resolver Winding Configuration

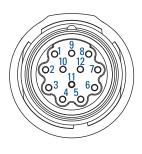

$$\label{eq:stars} \begin{split} E & \text{R1-R2} = E \, \text{SIN} \, (\omega \text{T}) \\ E & \text{S1-S3} = K \text{E} \text{R1-R2} \, \text{SINØ} \\ E & \text{S2-S4} = K \text{E} \text{R1-R2} \, \text{COSØ} \end{split}$$

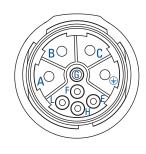
Resolver Alignment

With positive DC current into phase W and out of phase V (U floats) the resolver is aligned to electrical ± 5 counts. ie. Voltage S1-S3 set to null voltage S2-S4 max in phase with reference (R1-R2).

AKM2G Servo Motor Connector Pinouts

C & G Dual Connector Pinouts - AKM2G low voltage servo motors

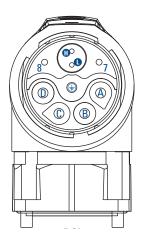



Pin	Function
1	В
2	B
3	А
4	Ā
5	Z
6	Z
7	GND
8	Thermal Sensor +
9	Thermal Sensor –
10	Vcc
11	N/C
12	N/C
13	N/C
14	N/C
15	U
16	V
17	W

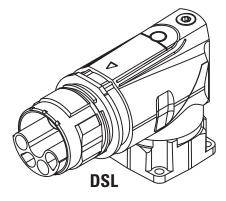
Commutating Encoder Feedback

Resolver Connector 1 N/C 2 Thermal Sensor + 3 S4, COS-4 S3, SIN-5 R2, REF-6 Thermal Sensor -7 S2, COS+ 8 S1, SIN+ 9 R1, REF+ 10 N/C 11 N/C N/C 12

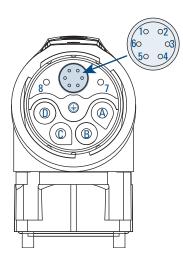
Shield is Not Connected at Motor End. On motor mounted connectors, the thermal sensor lead colors are (+) Blue, (–) Black.

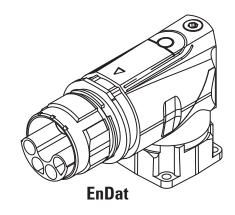

Power Connector

Pin	Function
А	U
\oplus	PE
С	W
В	V
F	Brake +
G	Brake -
Е	N/C
Н	N/C
L	N/C


Shield Connected to Motor Ground Internal to Motor

D- Connector Pinouts - Hybrid combined power and feedback for DSL and EnDat for AKM2G low voltage servo motors

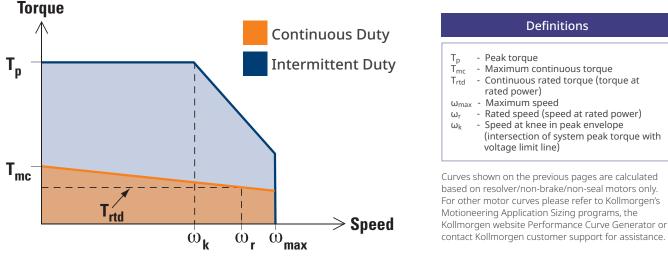

D- Dual Power + HIPERFACE DSL[®] Connector Option

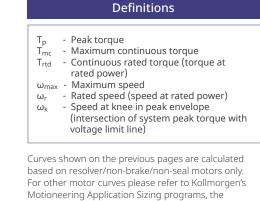

Power + DSL				
Pin	Function			
А	Phase U			
В	Phase V			
С	Phase W			
D	N/C			
\oplus	PE			
8	Brake +			
7	Brake -			
L.	DSL -			
Н	DSL +			

D- Dual Power + EnDat® Connector Option

PinFunctionAPhase UBPhase VCPhase W	
B Phase V	
C Phase W	
	_
D N/C	_
⊕ PE	
8 Brake +	
7 Brake -	
1 Up	
2 0 V	
Data +	
4 Data -	
5 Clock +	_
6 Clock -	

Kollmorgen Cables Offer the Complete Solution




Kollmorgen offers complete cable solutions for connecting drives and motors. This includes static, low cost cable sets for simple applications to high bend, high flex, hybrid cables that combine feedback and power in one cable.

https://www.kollmorgen.com/en-us/products/accessories/cables/motor-power-and-feedback-cables/motor-power-feedback-cables/motor-powe

AKM2G Performance Curve Overview

How to Build a Servo Drive and Motor System

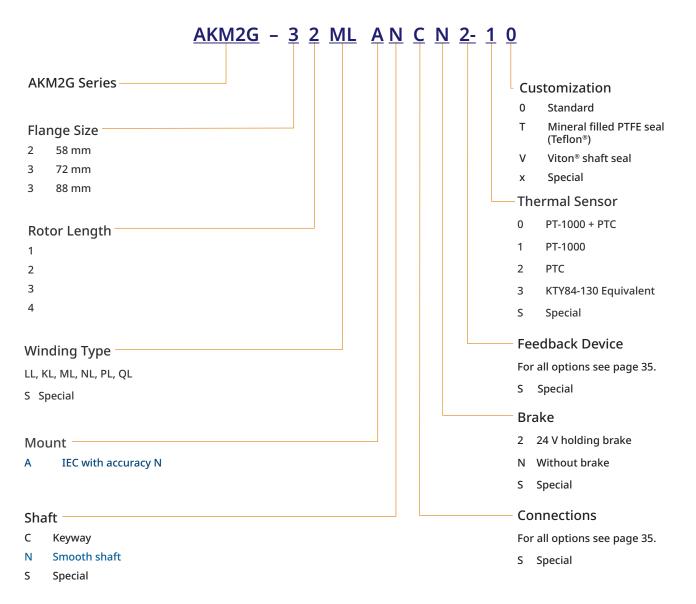
Performance data on the following pages is designed to help you select the optimum brushless servo motor.

Drive and Motor Performance Curves

The performance characteristics of a brushless servo system (motor/drives combination) are described by a torque/speed operating envelope. As shown above, the shaded areas of the curve indicate the continuous duty and intermittent duty zones of the system.

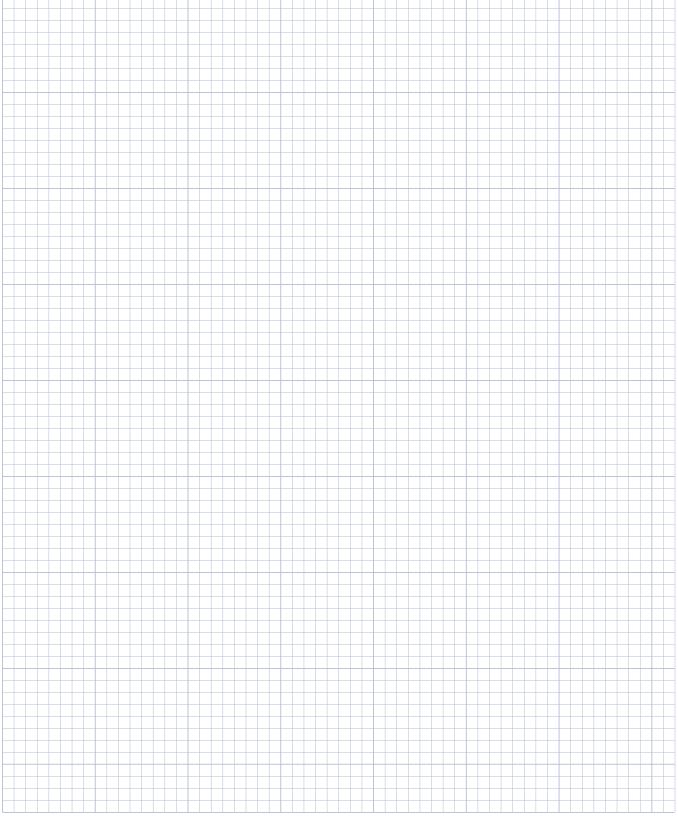
Continuous Duty Zone

The continuous duty zone is bordered by the maximum continuous torque line up to the intersection with the intermittent duty line. The continuous torque line is set by either the motor's maximum rated temperature, or the drives' rated continuous current output, whichever is less. The system voltage limit line is set by the voltage rating of the drives, the line voltage supplied, and the motor winding. The system can operate on a continuous basis anywhere within this area, assuming the ambient temperature is 40°C or less.


Intermittent Duty Zone

The intermittent duty zone is bordered by the peak torque line and the system voltage limit line. The peak torque line is set by either the drives' peak current rating, which the drive can produce for a limited time, or the maximum rated peak current for the motor, whichever is less. Refer to the Rating Data on the following pages. Note: Higher torque levels may be achievable at higher power levels.

Consult Kollmorgen Customer Support for more details. The system voltage limit line is set by the voltage rating of the drive, the line voltage applied and the motor winding. Operation in the intermittent zone must be limited to a duty cycle that will produce an RMS system torque falling within the continuous duty area. The RMS torque value is a function of the magnitude of the intermittent torque and the percentage of the time spent at that torque.


AKM2G Servo Motor Nomenclature

AKM[®]2G Low Voltage Brushless Servo Motor

Note: Options shown in blue text are considered standard.

Notes

0.125 inch divisions

Kollmorgen Solutions

Self-Help Tools

Motioneering[®] Online

Size and select the right product for your application needs

Performance Curve Generator

Optimize TBM/KBM/AKM windings using customer supplied environmental and drive information

Kollmorgen Developer Network

Find Answers to many key technical questions or start your own session

Drawing Generator

Provide TBM/KBM/AKM 2D and 3D drawings in many popular formats

Product Selector

Choose right product for your application needs

Stepper Optimizer

Select the most efficient stepper solution for your application

More Expertise for a More Successful Machine

Our global engineering, service and support network provides deep knowledge of all the major industries that rely on advanced motion control and automation technology. We offer world-class engineering expertise, selfservice design tools, personalized field service, and easy access to our design, application and manufacturing centers in strategic locations across the globe.

About Kollmorgen

Kollmorgen has more than 100 years of motion experience, proven in the industry's highest-performing, most reliable motors, drives, linear actuators, gearheads, AGV control solutions and automation platforms. We deliver breakthrough solutions that are unmatched in performance, reliability and ease of use, giving machine builders an irrefutable marketplace advantage.

Kollmorgen is a brand of Altra Industrial Motion Corp. (NASDAQ: AIMC), a premier global designer and producer of a wide range of motion control and power transmission solutions. With engineered components and systems that provide the essential control of equipment speed, torque, positioning, and other functions, Altra products can be used in nearly any machine, process or application involving motion.

KOLLMORGEN

www.kollmorgen.com

Specifications are subject to change without notice. It is the responsibility of the product user to determine the suitability of this product for a specific application. All trademarks are the property of their respective owners

© 2020 Kollmorgen Corporation. All rights reserved

KM_SG_000360_RevB_EN